K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Câu 1 :

A B C H K

a) Xét \(\Delta AHC,\Delta KHC\) có:

\(\widehat{CAH}=\widehat{CKH}\left(=90^{^O}\right)\)

\(CH:Chung\)

\(\widehat{ACH}=\widehat{KCH}\) (CH là tia phân giac của \(\widehat{C}\))

=> \(\Delta AHC=\Delta KHC\) (cạnh huyền - góc nhọn) (*)

b) Từ (*) suy ra :

\(AC=CK\) (2 cạnh tương ứng)

Xét \(\Delta AKC\) có :

\(AC=CK\left(cmt\right)\)

=> \(\Delta AKC\) cân tại A (đpcm)

7 tháng 2 2018

D E F 10 24 26

Xét \(\Delta DEF\) có :

\(DF^2=EF^2-DE^2\) (Định lí PITAGO đảo)

=> \(DF^2=26^2-10^2\)

=> \(DF^2=576^{ }\)

=> \(DF=\sqrt{576}=24\)

Mà theo bài ra : \(DF=24\left(cm\right)\)

Do đó , \(\Delta DEF\) là tam giác vuông

7 tháng 2 2018

a) Xét tam giác ABE và HBE có :

Cạnh BE chung

AB = BH

\(\widehat{ABE}=\widehat{HBE}\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BHE}=\widehat{BAE}=90^o\Rightarrow EH\perp BC\)

b) Gọi giao điểm của AH và BE = I.

Dễ dàng chứng minh được \(\Delta AIB=\Delta HIB\left(c-g-c\right)\)

\(\Rightarrow AI=IH;\widehat{AIB}=\widehat{HIB}=90^o\)

Vậy BE là trung trực AH.

Sau này ta có thể dùng:

Vì BA = BH; EA = EH (\(\Delta ABE=\Delta HBE\) ) nên BE là trung trực AH.

c) Xét hai tam giác vuông BHK và BAC có

Góc B chung

BH = BA

\(\Rightarrow\Delta BHK=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow KH=AC\)

Lại có \(AE=HE\Rightarrow EC=EK\)

d) Xét tam giác AKC có CA và KH là các đường cao nên E là trực tâm, suy ra BE là đường cao.

Vậy thì \(BE\perp KC\)

Lại có \(BE\perp AH\Rightarrow\)AH//KC

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH

11 tháng 5 2018

A B C D E a) Xét 2 tam giác vuông ABE và DBE, ta có:

BE: cạnh chung

AB=BD (gt)

=> \(\Delta ABE=\Delta DBE\) (cạnh huyền - cạnh góc vuông)

b) Ta có:

\(\Delta ABE=\Delta DBE\) (câu a)

=> EA = ED

=> \(\Delta ADE\) cân tại E


a: \(\widehat{C}=90^0-30^0=60^0\)

c: Xét ΔCAD và ΔCMD có 
CA=CM

\(\widehat{ACD}=\widehat{MCD}\)

CD chung

Do đó: ΔCAD=ΔCMD

18 tháng 12 2016

a,b) A B C M D x y K 60* 30*

c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*

Xét ΔACD và ΔMCD, ta có:

CA=CM (gt)

\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)

Chung cạnh CD

Do đó: ΔACD = ΔMCD (c.g.c)

d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!

Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)

Xét ΔDAC va ΔKCA, ta có:

\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)

Chung cạnh AC

\(\widehat{DAC}=\widehat{KCA}=90\)*

Do đó: ΔDAC = ΔKCA (g.c.g)

=> AK=CD (2 cạnh tương ứng).

e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*

\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)

\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)

haha \(\Rightarrow\widehat{AKC}=60\)* ok

 

17 tháng 12 2016

góc C=60 độ

 

9 tháng 4 2018

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

\(\Rightarrow\Delta AHB=\Delta AHC\)  (Hai cạnh góc vuông)

b) Do HK // AB nên \(\widehat{AHK}=\widehat{BAH}\)  (Hai góc so le trong)

Lại có \(\widehat{BAH}=\widehat{CAH}\)

\(\Rightarrow\widehat{KAH}=\widehat{KHA}\)

Vậy thì \(\widehat{KHC}=\widehat{KCH}\) (Cùng phụ với hai góc trên)

\(\Rightarrow\) tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có \(2\left(AH+BK\right)=2\left(3HG+3GK\right)=6\left(HG+GK\right)\)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên \(6\left(HG+GK\right)>6.HK=3.2HK=3AC\)

Tóm lại: \(2\left(AH+BK\right)>3AC\)

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

⇒ΔAHB=ΔAHC  (Hai cạnh góc vuông)

b) Do HK // AB nên ^AHK=^BAH  (Hai góc so le trong)

Lại có ^BAH=^CAH

⇒^KAH=^KHA

Vậy thì ^KHC=^KCH (Cùng phụ với hai góc trên)

 tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có 2(AH+BK)=2(3HG+3GK)=6(HG+GK)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên 6(HG+GK)>6.HK=3.2HK=3AC

Tóm lại: 2(AH+BK)>3AC