K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

Mn khoanh giúp mk nka !!!

29 tháng 10 2021

1. C

2. C

3. C

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

17 tháng 3 2017

Bài 1:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2007.\dfrac{1}{90}-3\)

\(=19,3\)

Vậy S = 19,3

17 tháng 3 2017

5b)\(S=1+3+3^2+...+3^{2013}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)

\(\Rightarrow3S-S=3^{2014}-1\)

\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)

28 tháng 11 2017

a) C = 20013 - |52x|

do \(-\left|5-2x\right|\le0\forall x\)

=> 20013-\(\left|5-2x\right|\le20013\)

=>A≤20013

=> GTLN C =20013 khi 5-2x=0

=> 2x=5

=> x=\(\dfrac{5}{2}\)

vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)

b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)

do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)

=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)

=> D≤7

=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)

=> x=-\(\dfrac{8}{3}\)

20 tháng 11 2017

a) Ta có: \(\left(2x+\frac{1}{4}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{4}\right)^4+6\ge6\)

Dấu "=" xảy ra khi \(2x+\frac{1}{4}=0\Rightarrow2x=\frac{-1}{4}\Rightarrow x=\frac{-1}{8}\)

Vậy Emin = 6 \(\Leftrightarrow x=\frac{-1}{8}\)

b) Ta có: \(\left(5-3x\right)^2\ge0\Rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu "=" xảy ra khi \(5-3x=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)

Vậy Emin = -2013 \(\Leftrightarrow x=\frac{5}{3}\)

Mấy bài còn lại làm tương tự.

20 tháng 11 2017

6

-2013

2013

-1

2014

2016

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

20 tháng 11 2017

a, Ta có: \(\left(2x+\dfrac{1}{4}\right)^4\ge0\rightarrow\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Dấu ''=" xảy ra khi \(2x+\dfrac{1}{4}=0\rightarrow2x=\dfrac{-1}{4}\rightarrow x=\dfrac{-1}{8}\)

Vậy MinE=6\(\Leftrightarrow x=\dfrac{-1}{8}\)

b, Ta có: \(\left(5-3x\right)^2\ge0\rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu ''='' xảy ra khi \(5-3x=0\rightarrow3x=5\rightarrow x=\dfrac{5}{3}\)

Vậy MinE=-2013\(\Leftrightarrow x=\dfrac{5}{3}\)

20 tháng 11 2017

a) \(E=\left(2x+\dfrac{1}{4}\right)^4+6\)

\(\left(2x+\dfrac{1}{4}\right)^4\ge0\)

Nên \(\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Vậy GTNN của \(E=6\) khi \(2x+\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{-1}{8}\)

b) \(E=\left(5-3x\right)^2-2013\)

\(\left(5-3x\right)^2\ge0\)

Nên \(\left(5-3x\right)^2-2013\ge-2013\)

Vậy GTNN của \(E=-2013\) khi \(5-3x=0\Leftrightarrow x=\dfrac{5}{3}\)

c) \(A=2013+\left|2x-3\right|\)

\(\left|2x-3\right|\ge0\)

Nên \(2013+\left|2x-3\right|\ge2013\)

Vậy GTNN của \(A=2013\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

d) \(B=-1+\left|\dfrac{1}{2}x-3\right|\)

\(\left|\dfrac{1}{2}x-3\right|\ge0\)

Nên \(-1+\left|\dfrac{1}{2}x-3\right|\ge-1\)

Vậy GTNN của \(B=-1\) khi \(\dfrac{1}{2}x-3=0\Leftrightarrow x=6\)

11 tháng 1 2018

bài 1:

|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1

a

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5

= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5

= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5

= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)

b) +) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1

= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)

+) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1

= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)

11 tháng 1 2018

bài 3

x.y.z = 2 và x + y + z = 0

A = ( x + y )( y +z )( z + x )

= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )

= 0 + 2 = 2

bài 4

a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)

=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)

=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)

x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)

2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0

x = 0 : 2 = 2

Bài 3: 

Vì x,y,z tỉ lệ với 2;3;4 nên x/2=y/3=z/4

Đặt x/2=y/3=z/4=k

=>x=2k; y=3k; z=4k

\(M=\dfrac{5x+2y+z}{x+4y-3z}=\dfrac{10k+6k+4k}{2k+12k-12k}=10\)

12 tháng 3 2017

Câu 1:

C.14

Câu 2:

B.\(\dfrac{-2}{3}\)\(x^4\)\(y^4\)

Câu 3:

C.\(72^0\)

Câu 4: Không có hình nên mình tạm thời không làm nha

12 tháng 3 2017

Câu 1: Thay \(x=-1;y=2\) vào bt ta có:

\(5.\left(-1\right)^2+6.2-3=5.1+12-3=14\)

Vậy chọn ý C

Câu 2: Tính:

\(-\dfrac{1}{3}x^2y.2x^2y^3=\left(-\dfrac{1}{3}.2\right)\left(x^2.x^2\right)\left(y.y^3\right)\)

\(=-\dfrac{2}{3}x^4y^4\)

Vậy chịn ý B

Câu 3: gọi tam giác đó là: \(\Delta ABC\) cân tại A, có: \(\widehat{A}=36^o\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng 3 góc troq 1 tam giác)

hay \(36^o+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=180^o-36^o=144^o\)

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)

\(\Rightarrow\widehat{B}=\widehat{C}=\dfrac{144^o}{2}=72^o\)

Vậy chọn ý C

Câu 4: k có hình!

17 tháng 6 2017

Bài 1:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)

\(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)

\(\Rightarrowđpcm\)

d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)

\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

e, Sai đề

f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)

\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

17 tháng 6 2017

Hâm mộ :)))))