K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

a) Ta có: \(\left(2x+\frac{1}{4}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{4}\right)^4+6\ge6\)

Dấu "=" xảy ra khi \(2x+\frac{1}{4}=0\Rightarrow2x=\frac{-1}{4}\Rightarrow x=\frac{-1}{8}\)

Vậy Emin = 6 \(\Leftrightarrow x=\frac{-1}{8}\)

b) Ta có: \(\left(5-3x\right)^2\ge0\Rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu "=" xảy ra khi \(5-3x=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)

Vậy Emin = -2013 \(\Leftrightarrow x=\frac{5}{3}\)

Mấy bài còn lại làm tương tự.

20 tháng 11 2017

6

-2013

2013

-1

2014

2016

20 tháng 11 2017

a, Ta có: \(\left(2x+\dfrac{1}{4}\right)^4\ge0\rightarrow\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Dấu ''=" xảy ra khi \(2x+\dfrac{1}{4}=0\rightarrow2x=\dfrac{-1}{4}\rightarrow x=\dfrac{-1}{8}\)

Vậy MinE=6\(\Leftrightarrow x=\dfrac{-1}{8}\)

b, Ta có: \(\left(5-3x\right)^2\ge0\rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu ''='' xảy ra khi \(5-3x=0\rightarrow3x=5\rightarrow x=\dfrac{5}{3}\)

Vậy MinE=-2013\(\Leftrightarrow x=\dfrac{5}{3}\)

20 tháng 11 2017

a) \(E=\left(2x+\dfrac{1}{4}\right)^4+6\)

\(\left(2x+\dfrac{1}{4}\right)^4\ge0\)

Nên \(\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Vậy GTNN của \(E=6\) khi \(2x+\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{-1}{8}\)

b) \(E=\left(5-3x\right)^2-2013\)

\(\left(5-3x\right)^2\ge0\)

Nên \(\left(5-3x\right)^2-2013\ge-2013\)

Vậy GTNN của \(E=-2013\) khi \(5-3x=0\Leftrightarrow x=\dfrac{5}{3}\)

c) \(A=2013+\left|2x-3\right|\)

\(\left|2x-3\right|\ge0\)

Nên \(2013+\left|2x-3\right|\ge2013\)

Vậy GTNN của \(A=2013\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

d) \(B=-1+\left|\dfrac{1}{2}x-3\right|\)

\(\left|\dfrac{1}{2}x-3\right|\ge0\)

Nên \(-1+\left|\dfrac{1}{2}x-3\right|\ge-1\)

Vậy GTNN của \(B=-1\) khi \(\dfrac{1}{2}x-3=0\Leftrightarrow x=6\)

28 tháng 11 2017

a) C = 20013 - |52x|

do \(-\left|5-2x\right|\le0\forall x\)

=> 20013-\(\left|5-2x\right|\le20013\)

=>A≤20013

=> GTLN C =20013 khi 5-2x=0

=> 2x=5

=> x=\(\dfrac{5}{2}\)

vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)

b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)

do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)

=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)

=> D≤7

=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)

=> x=-\(\dfrac{8}{3}\)

a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)

=>16x-7=13x+2

=>3x=9

hay x=3

b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)

=>x+2017=0

hay x=-2017

e: \(\left(2x-3\right)^2=144\)

=>2x-3=12 hoặc 2x-3=-12

=>2x=15 hoặc 2x=-9

=>x=15/2 hoặc x=-9/2

14 tháng 6 2017

a.

| x | = 5,6

=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)

Vậy \(x\in\left\{-5,6;5,6\right\}\)

b, \(\left|x-3,5\right|=5\)

=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)

Vậy \(x\in\left\{-1,5;8,5\right\}\)

c,\(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

=> \(\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{4};\dfrac{5}{4}\right\}\)

d,\(\left|4x\right|-\left(\left|-13,5\right|\right)=\left|\dfrac{1}{4}\right|\)

=> \(\left|4x\right|-13,5=\dfrac{1}{4}\)

=> \(\left|4x\right|=13,75\)

=>\(\left[{}\begin{matrix}4x=13,75\\4x=-13,75\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=3,4375\\x=-3,4375\end{matrix}\right.\)

Vậy \(x\in\left\{-3,4375;3,4375\right\}\)

14 tháng 6 2017

e, ( x - 1 ) 3 = 27

=> x - 1 = 3

=> x = 4

Vậy x = 4

f, ( 2x - 3)2 = 36

=> \(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=4,5\\x=-1,5\end{matrix}\right.\)

Vậy x\(\in\left\{-1,5;4,5\right\}\)

g, \(5^{x+2}=625\)

=> \(5^{x+2}=5^4\)

=> x + 2 = 4

=> x = 2

Vậy x = 2

h, ( 2x - 1)3 = -8

=> 2x - 1 = -2

=> x = \(\dfrac{-1}{2}\)

Vậy x = \(\dfrac{-1}{2}\)

i, \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)

=> \(\dfrac{1.2.3.4.5...30.31}{4.6.8.10.12...62.64}=2^x\)

=>\(\dfrac{1.2.3.4.5...30.31}{\left(2.3.4.5...30.31.32\right)\left(2.2.2.2...2.2_{ }\right)}=2^x\)(có 31 số 2)

=> \(\dfrac{1}{32.2^{31}}=2^x\)

=> \(\dfrac{1}{2^{36}}=2^x\)

=> x = -36

Vậy x = -36

28 tháng 2 2019

a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)

=> MinN đạt được bằng 2008 khi

\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)

Thay vào M ,ta có

\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)

b) Với x , y dương , ta được ngay ĐPCM

Với x âm , y âm , ta cũng được ĐPCM

Vậy nên xét trường hợp x,y trái dấu

\(2x^4y^2\ge0\)

\(7x^3y^5\le0\)

\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)

c)

\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

27 tháng 2 2017

a) \(-x^2\le0\)

Vậy \(MAX_{-x^2}=0\) khi x = 0

b) Đặt \(A=-2x^2+5\)

\(-2x^2\le0\)

\(\Rightarrow-2x^2+5\le5\)

Vậy \(MAX_A=5\) khi x = 0

c) Đặt \(B=3-x^4\)

\(-x^4\le0\)

\(\Rightarrow3-x^4\le3\)

Vậy \(MAX_B=3\) khi x = 0

d) Đặt \(C=\frac{1}{x^2+2}\)

\(x^2+2\ge0\) nên để C lớn nhất thì \(x^2+2\) bé nhất

Ta có: \(x^2+2\ge2\)

\(\Rightarrow\frac{1}{x^2+2}\le\frac{1}{2}=0,5\)

Vậy \(MAX_C=0,5\) khi x = 0

e) tương tự d

27 tháng 2 2017

a)Ta thấy: \(x^2\ge0\Rightarrow-x^2\le0\)

Dấu "=" xảy ra khi \(-x^2=0\Leftrightarrow x=0\)

b)Ta thấy: \(x^2\ge0\Rightarrow-2x^2\le0\Rightarrow-2x^2+5\le5\)

Dấu "=" xảy ra khi \(-2x^2=0\Leftrightarrow x=0\)

c)Ta thấy: \(x^4\ge0\Rightarrow-x^4\le0\Rightarrow3-x^4\le3\)

Dấu "=" xảy ra khi \(-x^4=0\Leftrightarrow x=0\)

d)Ta thấy: \(x^2\ge0\Rightarrow x^2+2\ge2\Rightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x^2=0\Leftrightarrow x=0\)

e)Ta thấy: \(x^2\ge0\Rightarrow2x^2\ge0\Rightarrow2x^2+5\ge5\Rightarrow\dfrac{1}{2x^2+5}\le\dfrac{1}{5}\)

Dấu "=" xảy ra khi \(2x^2=0\Leftrightarrow x=0\)

g)Ta thấy: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

\(\Rightarrow\dfrac{1}{\left(x-1\right)^2+4}\le\dfrac{1}{4}\Rightarrow\dfrac{8}{\left(x-1\right)^2+4}\le2\)

Dấu "=" xảy ra khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

P/s:mình nghĩ những bài tập này rất cơ bản, bạn nên tự làm không lên lớp sau mình thề bạn sẽ mất sạch điểm bài cực trị

23 tháng 9 2017

a.\(3^{x-1}=243\)

\(3^x:3^1=243\)

\(3^x=729\)

\(\Leftrightarrow3^6=729\)

\(\Leftrightarrow x=6\)

b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)

\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)

\(\left(\dfrac{2}{3}\right)^x=3\)

Câu b tính đến đây rồi không mò đc x nữa.