Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)
Vậy pt luôn có 2 nghiệm
b, để pt có 2 nghiệm pb khi m khác 1
c, để pt có nghiệm kép khi m = 1
d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)
Ta có \(x_1-2x_2=0\left(3\right)\)
Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)
Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)
a) Thay m=3
\(x^2-2.3.m+3^2-3=0\)
\(x^2-6x+6=0\)
\(\text{∆}=6^2-4.6=12>0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)
b) \(\text{∆}=\left(-2m\right)^2-4.\left(m^2-3\right)\)
\(=4m^2-4m^2+12=12>0\)
⇒ pt có 2 nghiệm phân biệt với mọi m
Ta có:\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
\(a) x^2 - 2mx + 2m - 3 = 0.\)
\(∆ ' = m^2 -(2m-3) = m^2 -2m +1 +2 = (m-1) ^2 +2\)
Có \((m+1) ^2 ≥0 <=> (m+1)^2 +2 ≥2 >0\)
\(=> ∆'>0 <=> PT\) luôn có 2 nghiệm \(PB\) với mọi m
꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂
\(x^2-2mx+m^2=m^2-m+2\)
\(\left(x-m\right)^2=m^2-m+2\)
xét VP=\(VP=\left(m-\frac{1}{2}\right)^2+\left(2-\frac{1}{4}\right)>0\) với mọi m => dpcm
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
\(\text{Δ}=\left(2m\right)^2-4\left(-m+3\right)\)
\(=4m^2+4m-12\)
\(=4\left(m^2+m-3\right)\)
=>Đề sai rồi bạn
nguu vcl