Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
\(a) x^2 - 2mx + 2m - 3 = 0.\)
\(∆ ' = m^2 -(2m-3) = m^2 -2m +1 +2 = (m-1) ^2 +2\)
Có \((m+1) ^2 ≥0 <=> (m+1)^2 +2 ≥2 >0\)
\(=> ∆'>0 <=> PT\) luôn có 2 nghiệm \(PB\) với mọi m
꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂
a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)
\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)
=>(1) luôn có hai nghiệm phân biệt
b: (x1-x2)^2=32
=>(x1+x2)^2-4x1x2=32
=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)
=>4m^2-8m+20-32=0
=>4m^2-8m-12=0
=>m^2-2m-3=0
=>m=3 hoặc m=-1
Δ=(-2m)^2-4(m-1)
=4m^2-4m+4
=4m^2-4m+1+3
=(2m-1)^2+3>=3>0
=>Phương trình luôn có hai nghiệm phân biệt
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$
delta = b2 - 4ac = (-(m+2))2 - 4*1*(2m-1) = (m+2)2 - 4( 2m-1 ) = m2 + 4m +4 - 8m + 4 = m2 - 4m + 8 = (m-2)2 + 4
Ta có : \(\hept{\begin{cases}\left(m-2\right)^2>=0\left(voimoim\right)\\4>0\left(lđ\right)\end{cases}}\)
=> ( m-2)2 +4 >0 ( với mọi m )
=> delta > 0 => pt luôn có 2 nghiệm phân biệt
Đề bài không đúng, ví dụ với \(m=-1\) phương trình trở thành \(x^2-2x+5=0\) đây là một phương trình vô nghiệm
a) Thay m=1 vào phương trình ta được:
x2+2.1.x-6.1-9=0
<=> x2+2x-6-9=0
<=> x2+2x-15=0
<=> x2+5x-3x-15=0
<=> x(x+5)-3(x+5)=0
<=> (x-3)(x+5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
b) Thay x=2 vào phương trình ta được:
22+2.2.m-6m-9=0
<=> 4+4m-6m-9=0
<=> -2x-5=0
<=> -2x=5
<=> \(x=\frac{-5}{2}\)
\(\Delta=\left(2m\right)^2-4.1.\left[-\left(2m+3\right)\right]=4m^2+8m+12\)
\(=4.\left(m^2+2m+3\right)=4.\left(m+1\right)^2+8\ge8>0\) ∀m
⇒ Phương trình đã cho luôn có 2 nghiệm phân biệt với mọi m (ĐPCM)