\(AB=3\sqrt{2}\)cm. Vậy AC bằng bao nhiêu cm ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

ABCd là hình vuông nên

AB=BC=\(3\sqrt{2}\left(cm\right)\)

áp dụng định lý py-ta-go vào tam giác ABC vuông tại B có:

AC2=AB2+BC2

AC2=2.\(\left(3\sqrt{2}\right)^2\)

AC2=36

=>AC=6(cm)

25 tháng 6 2021

Bài 1 :  A B C D 4

Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)

\(\Rightarrow AB=BC=CD=AD=4\)cm 

Áp dụng định lí pytago tam giác ADC vuông tại D ta có : 

\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm 

Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm 

25 tháng 6 2021

Bài 2 : 

A B C D 3 căn27

Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)

Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :

 \(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm 

25 tháng 3 2017

em chịu

25 tháng 3 2017

có ai trả lời đc không? giúp mình với TT_TT

25 tháng 3 2017

Đợi xíu, còn 1 ý chưa ra

26 tháng 3 2016

Ta có : BC = 2 \(\sqrt{2}\)

=> BC = \(\sqrt{4}\)= 2 cm

Lại có : AB = 2cm , AC = 2 cm

=> \(\Delta\)ABC đều 

=> góc C = 60\(^o\)

20 tháng 2 2017

hinh nhu la sai roi

2 tháng 7 2018

a) Xét tứ giác AIHK có \(\widehat{AIH}+\widehat{IAK}+\widehat{AKH}=270^o\Rightarrow\widehat{IHK}=90^o\)

Vậy nên \(HI\perp HK\)

b) Do IA và HK cùng vuông góc với AC nên IA // HK

Vậy thì \(\widehat{IAH}=\widehat{KHA}\)   (So le trong)

Xét tam giác IAH và tam giác KHA có:

\(\widehat{AIH}=\widehat{HKA}=90^o\)

Cạnh AH chung

\(\widehat{IAH}=\widehat{KHA}\)   

\(\Rightarrow\Delta AIH=\Delta HKA\)     (Cạnh huyền - góc nhọn)

\(\Rightarrow IA=HK.\)

c)  Xét tam giác IAH và tam giác HKI có:

\(\widehat{AIH}=\widehat{KHI}=90^o\)

Cạnh IH chung

\(IA=HK\)   

\(\Rightarrow\Delta AIH=\Delta KHI\)     (Hai cạnh góc vuông)

\(\Rightarrow AH=IK.\)

d) Ta thấy ngay các cặp góc so le trong bằng nhau nên \(\Delta IOA=\Delta KOH\left(g-c-g\right)\Rightarrow OI=OK,OA=OH\)

Xét tam giác vuông IAH có IO là trung tuyến ứng với cạnh huyền nên OH = OA = OI.

Vậy nên OA = OI = OH = OK.

e) 

1. Nếu tam giác ABC cân thì AH là đường cao đồng thời trung tuyến. Vậy thì AH = BH = CH.

Xét tam giác cân BHA có HI là đường cao nên đồng thời là đường trung tuyến. Vậy nên I là trung điểm AB.

Hoàn toàn tương tự ta có K là trung điểm AC.

2.  Tam giác ABC vuông cân tại A nên \(\widehat{ACB}=45^o\)

IA = AB/2; AK = AC/2 mà AB = AC nên AI = AK.

Vậy thì tam giác IAK cũng vuông cân tại A.

Vậy nên \(\widehat{AKI}=45^o\) 

Từ đó ta có \(\widehat{AKI}=\widehat{ACB}=45^o\)

Chúng lại ở vị trí đồng vị nên suy ra IK // BC.

f) Ta có AM = MC nên \(\widehat{MAC}=\widehat{MCA}\)

Lại có \(\widehat{MCA}=\widehat{AHK}\)   (Cùng phụ với góc \(\widehat{KHC}\)  )

Suy ra \(\widehat{MAC}=\widehat{AHK}\)

Lại có \(\widehat{OKA}=\widehat{OHA}\)

Vậy nên \(\widehat{MAK}+\widehat{OKA}=\widehat{AHK}+\widehat{IHA}=90^o\)

Gọi J là giao điểm của AM và IK thì \(\widehat{AJK}=90^o\)  hay \(KI\perp AM\)