Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 1 + (-2 + 3 ) + ( -4 + 5 ) + . . . + (-2000 + 2001) + (-2002) + 2003)
M = 1 + 1+ 1+ . . . + 1 + 1
Dãy số này có 2003 số hạng và có 1001 cặp số có tổng bằng nhau
1001.1+1 = 1002 nên M = 1002
2n+3=2n-4+7
=2(n-2) +7
vì 2(n-2) chia hết cho n-2 nên để 2n+3 chia hết cho n-2 thì n-2 phải thuộc ước của 7
=>n-2={-7;-1;1;7}
<=> n={-5;1;3;9}
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
Gọi d là ước nguyên tố của 2n-1 và 3n+2
Ta có 2n-1 : d( mình dùng dấu chia thay cho chia hết)
3n+2 :d
=>3(2n-1) :d
2(3n+2) :d
=> 6n-3 :d
6n+4 :d
=>6n+4-(6n-3)=6n+4-6n+3=7 :d
d là nguyên tố nên d=7
Ta có 3n+2 :7
=>3n+2-14 :7
=> 3n-12 :7
3(n-4) :7
Mà (3;7)=1 => n-4 :7
n-4=7k
n=7k+4
Vậy để phân số trên rút gọn được thì n=7k+4
Bài 2:
a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)
Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>5n-3={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | \(\frac{4}{5}\) | \(\frac{2}{5}\) | 1 | \(\frac{1}{5}\) | \(\frac{6}{5}\) | 0 | \(\frac{9}{5}\) | -\(\frac{3}{5}\) |
Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên
Cách 1: Liệt kê các phần tử của tập hợp.
\(A=\left\{0;1;2;3;4;5;6;7;8;9\right\}\).
Cách 2: Theo tính chất đặc trưng của phần tử trong tập hợp đó.
\(A=\left\{x\inℕ|x< 10\right\}\).
A = { 0; 1; 2; 3; ...; 7; 8; 9 }
\(A=\left\{x\inℕ|x< 10\right\}\)
Ta có: \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2019\right)+2019=2019\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(0+1+2+...+2019\right)=0\)( có 2020 chữ x )
\(\Leftrightarrow2020x+2039190=0\)
\(\Leftrightarrow x=-1009,5\)
Ta có : \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2019\right)+2019=2019\)
\(\Rightarrow x+x+1+x+2+...+x+2019=0\)
\(\Rightarrow2020x+\left(1+2+3+...+2019\right)=0\)
\(\Rightarrow2020x+\frac{2019.2020}{2}=0\)
\(\Rightarrow2020x+2039190=0\)
\(\Rightarrow2020x=-2039190\)
\(\Rightarrow x=1009,5\)
Vậy \(x=1009,5\)
\(\frac{2}{5}+\frac{-1}{5}-\frac{3}{4}-\frac{-2}{3}\text{ }\)
\(=\frac{2}{5}+\frac{-1}{5}+\frac{-3}{4}+\frac{2}{3}\)
\(=\left(\frac{2}{5}+\frac{-1}{5}\right)+\left(\frac{-3}{4}+\frac{2}{3}\right)\)
\(=\frac{1}{5}+\left(\frac{-9}{12}+\frac{8}{12}\right)\)
\(=\frac{1}{5}+\frac{-1}{12}\)
\(=\frac{12}{60}+\frac{-5}{60}\)
\(=\frac{7}{60}\)
\(\frac{2}{5}+\left(-\frac{1}{5}\right)-\frac{3}{4}-\left(-\frac{2}{3}\right)\)
\(=\frac{2}{5}-\frac{1}{5}-\frac{3}{4}+\frac{2}{3}\)
\(=\frac{1}{5}-\frac{3}{4}+\frac{2}{3}\)
\(=\frac{12}{60}-\frac{45}{60}+\frac{40}{60}\)
\(=\frac{12}{60}-\left(\frac{45}{60}-\frac{40}{60}\right)\)
\(=\frac{12}{60}-\frac{5}{60}\)
\(=\frac{7}{60}\)