K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

M = 1 + (-2 + 3 ) + ( -4 + 5 ) + . . . + (-2000 + 2001) + (-2002) + 2003)

M = 1 + 1+ 1+ . . . + 1 + 1

Dãy số này có 2003 số hạng và có 1001 cặp số có tổng bằng nhau

1001.1+1 = 1002 nên M = 1002

10 tháng 7 2019

\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)

\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)

Số nào xuất hiện 2 lần thì thay thế những số đó bằng số 1.

\(B=\frac{1}{2020}\)

10 tháng 7 2019

B = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right).\left(1-\frac{1}{2020}\right)\)

    = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2018}{2019}.\frac{2019}{2020}\)

    = \(\frac{1.2.3...2019}{2.3.4..2020}\)(Nếu có 2 thừa số giống nhau lặp lại ở tử số và mẫu số thì rút gọn coi như triệt tiêu hết và không có gì)

   =  \(\frac{1}{2020}\)

15 tháng 2 2020

a)  Xét : 

15 tháng 2 2020

a)  Xét : |x| \(\ge\)0

             |y|\(\ge\)0

mà |x|+|y| = 1

=) |x| = 1 hoặc |y|=1

=) có 2 cặp số x,y sau :

 ( 1,0 ) ; ( 0,1 ) ; ( -1,0 ) ; ( 0,-1 )

b) 

Xét : |x| \(\ge\)0

             |y|\(\ge\)0

mà |x|+|y| = 0

 =) |x| = 0

    |yI = 0

vậy có 1 cặp số x,y là : (0,0)

26 tháng 12 2015

(1-2)+(3-4)+...+(2011-2012).........(có (2012-1+1):2=1006 cặp số)

=-1+-1+-1+.......+-1

=-1.1006=-1006

tick nha

28 tháng 12 2016

Ta có:102016-1=100...0-1 (có 2016 số 0)=99..9(có 2015 chữ số 9)

Tổng chữ số của số trên là 9x2015 \(⋮9\)

nên 102016-1\(⋮9\)

5 tháng 7 2019

Vì chia hết cho cả 2 và 5 nên số đó có tận cùng là 0 nên ở ý a, số đó là 370

b, Để chia hết cho 5 thì phải có tận cùng là 0 hoặc 5, nhưng để chia hết cho cả 3 thì phải có tổng các chữ số chia hết cho 3. Như vậy số 28.. phải có tận cùng là 5 tức là số 285

5 tháng 7 2019

a) 37.. chia hết cho cả 2 và 5

Ta thấy số tận cùng là 0;2;4;6;8 chia hết cho 2

             số tận cùng là 0;5 chia hết cho 5

để 37.. chia hết cho 2 và 5 thì số đó phải tận cùng bằng 0

Vậy số đó là 370

b) 28.. chia hết cho 3 và 5

Để 28.. chia hết cho 5 thì số đó phải tận cùng là 0 và 5

TH1: Nếu số đó là 280

- 280 chia hết cho 5

- 280 k chia hết cho 3 (vì 2 + 8 +0 = 10 k chia hết cho 3)

=> k thỏa mãn

TH2: Nếu số đó là 285

- 285 chia hết cho 5

- 285 chia hết cho 3 (vì 2 + 8 +5 = 15 chia hết cho 3)

=> Thỏa mãn

Vậy số đó là 285

HOK TOT

28 tháng 5 2017

ta có: C = 1/32 + 1/34 + 1/36 +...+ 1/3100 => 9C = 1 + 1/32 +1/34 +...+1/398

=> 9C - C = (1 + 1/32 + 1/34 +...+1/398 ) - (1/32 +1/34 + 1/36 +...+ 1/3100)

=> 8C = 1 - 1/3100 => C = (1 - 1/3100 ) / 8

đúng ko nhỉ

28 tháng 5 2017

Hỏi gì mà khó dữ vậy!!!!!!

14 tháng 6 2017

A. \(xy-3y+x=5\Leftrightarrow y\left(x-3\right)+\left(x-3\right)=2\Leftrightarrow\left(x-3\right)\left(y+1\right)=2\)

\(\hept{\begin{cases}x-3=2\\y+1=1\end{cases}};\hept{\begin{cases}x-3=1\\y+1=2\end{cases}};\hept{\begin{cases}x-3=-1\\y+1=-2\end{cases}};\hept{\begin{cases}x-3=-2\\y+1=-1\end{cases}}\) giải ra ta được các cặp nghiệm là (x;y) = (5;0), (4;1), (2;-3), (1;-2)

B. Ta có: \(x=99.1+98.2+97.3+...+3.97+2.98+1.99\) dễ thấy trong mỗi hạng tử đều có tổng các thừa số bằng 100 nên ta áp dụng:

Ta được kết quả: x = 166650

# Mik làm ý A trước nhé, mik sợ dài :

- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )

- Giả sử đẳng thức cũng đúng với\(n=k\)hay :

\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)

Thật vậy, ta có:

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)

\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )

# giờ mik làm ý B nha !

- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )

Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :

1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :

13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )

\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)

\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )