Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(1+tan\alpha+tan^2\alpha+tan^3\alpha\)
\(=1+\dfrac{sin\alpha}{cos\alpha}+\dfrac{sin^2\alpha}{cos^2\alpha}+\dfrac{sin^3\alpha}{cos^3\alpha}\)
\(=1+\dfrac{sin\alpha}{cos\alpha}+\dfrac{sin^2\alpha}{cos^2\alpha}\left(1+\dfrac{sin\alpha}{cos\alpha}\right)\)
\(=\left(\dfrac{sin^2\alpha}{cos^2\alpha}+1\right)\left(1+\dfrac{sin\alpha}{cos\alpha}\right)\)
\(=\dfrac{1}{cos^2\alpha}\left(1+\dfrac{sin\alpha}{cos\alpha}\right)=\dfrac{sin\alpha+cos\alpha}{cos^3\alpha}\)
\(c,A\left(-2;2\right)\inđths\Leftrightarrow-2a+b=2\left(1\right)\\ Đths//Ox\Leftrightarrow a=0;b=y\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow a=0;b=2\)
1.
\(\dfrac{1-cosx+cos2x}{sin2x-sinx}=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(=\dfrac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\dfrac{cosx}{sinx}=cotx\)
2.
\(\dfrac{1+tan^4x}{tan^2x+cot^2x}=\dfrac{1+tan^4x}{tan^2x+\dfrac{1}{tan^2x}}=\dfrac{1+tan^4x}{\dfrac{tan^4x+1}{tan^2x}}=tan^2x\)
3.
\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)
\(=1-2sin^2x.cos^2x\)
4.
Áp dụng câu 3:
\(sin^4x+cos^4x=1-2sin^2x.cos^2x\)
\(=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2\)
\(=1-\dfrac{1}{2}sin^22x\)
5.
\(sin\left(x+y\right)sin\left(x-y\right)=\dfrac{1}{2}cos\left[\left(x-y\right)-\left(x+y\right)\right]-\dfrac{1}{2}cos\left[\left(x-y\right)+\left(x+y\right)\right]\)
\(=\dfrac{1}{2}\left(cos2y-cos2x\right)=\dfrac{1}{2}\left(1-2sin^2y\right)-\dfrac{1}{2}\left(1-2sin^2x\right)\)
\(=sin^2x-sin^2y\)
6.
\(tanx+cotx=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}\)
\(=\dfrac{1}{sinx.cosx}=\dfrac{2}{2sinx.cosx}=\dfrac{2}{sin2x}\)
a.
\(d\left(A;d\right)=\dfrac{\left|4.\left(-3\right)-3.5+8\right|}{\sqrt{4^2+\left(-3\right)^2}}=-\dfrac{19}{5}\)
b.
Do \(\Delta\perp d\) nên \(\Delta\) nhận (3;4) là 1 vtpt
Phương trình \(\Delta\) có dạng: \(3x+4y+c=0\)
\(d\left(A;\Delta\right)=2\Leftrightarrow\dfrac{\left|-3.3+4.5+c\right|}{\sqrt{3^2+4^2}}=2\)
\(\Leftrightarrow\left|c+11\right|=10\Rightarrow\left[{}\begin{matrix}c=-21\\c=-1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y-1=0\\3x+4y-21=0\end{matrix}\right.\)
c.
Do \(M\in\left(a\right)\) nên tọa độ có dạng: \(M\left(2m+1;m\right)\)
\(d\left(M;d\right)=\dfrac{\left|4\left(2m+1\right)-3m+8\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
\(\Leftrightarrow\left|5m+12\right|=20\Rightarrow\left[{}\begin{matrix}m=\dfrac{8}{5}\\m=-\dfrac{32}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(\dfrac{21}{5};\dfrac{8}{5}\right)\\M\left(-\dfrac{59}{5};-\dfrac{32}{5}\right)\end{matrix}\right.\)