K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

\(c,A\left(-2;2\right)\inđths\Leftrightarrow-2a+b=2\left(1\right)\\ Đths//Ox\Leftrightarrow a=0;b=y\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow a=0;b=2\)

8 tháng 4 2021

1.

\(1+tan\alpha+tan^2\alpha+tan^3\alpha\)

\(=1+\dfrac{sin\alpha}{cos\alpha}+\dfrac{sin^2\alpha}{cos^2\alpha}+\dfrac{sin^3\alpha}{cos^3\alpha}\)

\(=1+\dfrac{sin\alpha}{cos\alpha}+\dfrac{sin^2\alpha}{cos^2\alpha}\left(1+\dfrac{sin\alpha}{cos\alpha}\right)\)

\(=\left(\dfrac{sin^2\alpha}{cos^2\alpha}+1\right)\left(1+\dfrac{sin\alpha}{cos\alpha}\right)\)

\(=\dfrac{1}{cos^2\alpha}\left(1+\dfrac{sin\alpha}{cos\alpha}\right)=\dfrac{sin\alpha+cos\alpha}{cos^3\alpha}\)

8 tháng 4 2021

2.

\(\dfrac{1+tan^4x}{tan^2x+cot^2x}\)

\(=tan^2x.\dfrac{1+tan^4x}{tan^4x+cot^2x.tan^2x}\)

\(=tan^2x.\dfrac{1+tan^4x}{1+tan^4x}\)

\(=tan^2x\)

NV
19 tháng 3 2022

a.

\(d\left(A;d\right)=\dfrac{\left|4.\left(-3\right)-3.5+8\right|}{\sqrt{4^2+\left(-3\right)^2}}=-\dfrac{19}{5}\)

b. 

Do \(\Delta\perp d\) nên \(\Delta\) nhận (3;4) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(3x+4y+c=0\)

\(d\left(A;\Delta\right)=2\Leftrightarrow\dfrac{\left|-3.3+4.5+c\right|}{\sqrt{3^2+4^2}}=2\)

\(\Leftrightarrow\left|c+11\right|=10\Rightarrow\left[{}\begin{matrix}c=-21\\c=-1\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y-1=0\\3x+4y-21=0\end{matrix}\right.\)

c.

Do \(M\in\left(a\right)\) nên tọa độ có dạng: \(M\left(2m+1;m\right)\)

\(d\left(M;d\right)=\dfrac{\left|4\left(2m+1\right)-3m+8\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

\(\Leftrightarrow\left|5m+12\right|=20\Rightarrow\left[{}\begin{matrix}m=\dfrac{8}{5}\\m=-\dfrac{32}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(\dfrac{21}{5};\dfrac{8}{5}\right)\\M\left(-\dfrac{59}{5};-\dfrac{32}{5}\right)\end{matrix}\right.\)

8 tháng 4 2021

\(P=tanx\left(\dfrac{1+cos^2x}{sinx}-sinx\right)\)

\(=tanx.\dfrac{1+cos^2x-sin^2x}{sinx}\)

\(=\dfrac{sinx}{cosx}.\dfrac{2cos^2x}{sinx}=2cosx\)

NV
10 tháng 4 2021

1.

\(\dfrac{1-cosx+cos2x}{sin2x-sinx}=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)

\(=\dfrac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\dfrac{cosx}{sinx}=cotx\)

2.

\(\dfrac{1+tan^4x}{tan^2x+cot^2x}=\dfrac{1+tan^4x}{tan^2x+\dfrac{1}{tan^2x}}=\dfrac{1+tan^4x}{\dfrac{tan^4x+1}{tan^2x}}=tan^2x\)

3.

\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)

\(=1-2sin^2x.cos^2x\)

NV
10 tháng 4 2021

4.

Áp dụng câu 3:

\(sin^4x+cos^4x=1-2sin^2x.cos^2x\)

\(=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2\)

\(=1-\dfrac{1}{2}sin^22x\)

5.

\(sin\left(x+y\right)sin\left(x-y\right)=\dfrac{1}{2}cos\left[\left(x-y\right)-\left(x+y\right)\right]-\dfrac{1}{2}cos\left[\left(x-y\right)+\left(x+y\right)\right]\)

\(=\dfrac{1}{2}\left(cos2y-cos2x\right)=\dfrac{1}{2}\left(1-2sin^2y\right)-\dfrac{1}{2}\left(1-2sin^2x\right)\)

\(=sin^2x-sin^2y\)

6.

\(tanx+cotx=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}\)

\(=\dfrac{1}{sinx.cosx}=\dfrac{2}{2sinx.cosx}=\dfrac{2}{sin2x}\)