Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\left\{2,3,4,5\right\}\)
b)\(B=\left\{-2,-1,0,1,2\right\}\)
c)\(C=\left\{-3;0;3;6;9\right\}\)
d)\(A=\left\{3;4;7;12;19\right\}\)
a)\(n\in\)\(N^*\); \(3< n^2< 30\Leftrightarrow\sqrt{3}< n< \sqrt{30}\)
\(\Rightarrow n=\left\{2;3;4;5\right\}\)
\(\Rightarrow A=\left\{2;3;4;5\right\}\)
b)\(\left|n\right|< 3\Leftrightarrow-3< n< 3\) mà \(n\in Z\)
\(\Rightarrow n=\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow B=\left\{-2;-1;0;1;2\right\}\)
c)Các phần tử của C là x ; x=3k với k nguyên và thỏa mãn \(-4< x< 12\)
\(\Rightarrow x=\left\{-3;0;3;6;9\right\}\) (với các k lần lượt là \(-1;0;1;2;3\))
\(\Rightarrow C=\left\{-3;0;3;6;9\right\}\)
d)Các phần tử của A có dạng \(n^2+3\) với \(n\in N;n< 5\Rightarrow n=\left\{0;1;2;3;4\right\}\)
\(\Rightarrow A=\left\{3;4;7;12;19\right\}\)
lấy bán kính chia cho độ dài cung sẽ ra được số đo radian
a.
Do (P) qua M và N nên:
\(\left\{{}\begin{matrix}a-b+4=7\\16a-4b+4=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-4\end{matrix}\right.\)
b.
Do (P) có trục đối xứng x=2 và qua A nên:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+4=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b=-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-8\end{matrix}\right.\)
Câu 1:
\(\left(4x+3\right)\left(3x^2+x-2\right)\left(2x^2-3x-5\right)=0\\ \Leftrightarrow\left(4x+3\right)\left(3x-2\right)\left(x+1\right)\left(2x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-1\\x=\dfrac{2}{3}\\x=\dfrac{5}{2}\end{matrix}\right.\\ \Leftrightarrow A=\left\{-1;-\dfrac{3}{4};\dfrac{2}{3};\dfrac{5}{2}\right\}\)
Câu 2:
\(\left(x^2-4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=3\end{matrix}\right.\Leftrightarrow A=\left\{-2;2;3\right\}\\ \left|5x\right|-11\le0\Leftrightarrow\left|5x\right|\le11\Leftrightarrow-11\le5x\le11\\ \Leftrightarrow-\dfrac{11}{5}\le x\le\dfrac{11}{5}\\ \Leftrightarrow B=\left[-\dfrac{11}{5};\dfrac{11}{5}\right]\)
\(\Leftrightarrow A\cap B=\left\{-2;2\right\}\\ A\cup B=\left[-\dfrac{11}{5};3\right]\\ A\B=\left\{3\right\}\)