Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+2\right).\frac{1}{2}+\left(1+2+3\right).\frac{1}{3}+...+\left(1+2+3+...+2016\right).\frac{1}{2016}\)
\(A=\left(1+2\right).2:2.\frac{1}{2}+\left(1+3\right).3:2.\frac{1}{3}+...+\left(1+2016\right).2016:2.\frac{1}{2016}\)
\(A=3:2+4:2+...+2017:2\)
\(A=3.\frac{1}{2}+4.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(A=\frac{1}{2}.\left(3+4+...+2017\right)\)
\(A=\frac{1}{2}.\left(3+2017\right).2015:2\)
\(A=\frac{1}{2}.2020.2015.\frac{1}{2}\)
\(A=505.2015=1017575\)
\(2^{2016}+4^{2016}+6^{2016}+...+20^{2016}=2^{2016}\left(1+2^{2016}+3^{2016}+...+10^{2016}\right)\)
Do đó:
\(A=\frac{1^{2016}+2^{2016}+3^{2016}+...+10^{2016}}{2^{2016}+4^{2016}+6^{2016}+...+20^{2016}}=\frac{1}{2^{2016}}\)