Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C G H
a) Ta có:
\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H, ta có:
\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)
\(\Rightarrow AH=4\left(cm\right)\) (AH>0)
Vậy BH=3 cm; AH=4 cm
Tham khảo hình bài làm đầy đủ :
Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến
Chúc bn học tốt!
a) Xét tam giác vuông HAM và tam giác vuông KCM có :
\(\hept{\begin{cases}AM=MC\\\widehat{HMA}=\widehat{KMC}\end{cases}\Rightarrow\Delta HAM=\Delta KCM\left(ch-gn\right)}\)(ĐPCM)
=> HM = KM
b) Ta có \(\frac{BH+BK}{2}=\frac{BM-HM+BM+MK}{2}=\frac{2BM}{2}=BM\)(vì HM = KM)
Xét tam giác vuông BAM có AB2 + AM2 = BM2 (Định lý Py-ta-go)
=> AB2 < BM2
=> AB < BM
hay \(AB< \frac{BH+BK}{2}\left(\text{ĐPCM}\right)\)
\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)
Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)
Ta có : \(a=b.k\)
\(b=c.k\)
\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)
Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
Hok tốt~
Ta có :\(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{c};\frac{1}{b}=\frac{1}{a};\frac{1}{c}=\frac{1}{b}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow ab=bc=ca=a^2=b^2=c^2\)
\(\Rightarrow ab+bc+ca=a^2+b^2+c^2\)
\(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)
Vậy M=1
O x z t m y
a) ta có zm cắt xy tại O (gt)
-> \(\widehat{xOz}\)và \(\widehat{mOy}\)là 2 góc đồng vị (tính chất)
=>\(\widehat{xOz}=\widehat{mOy}\)(tính chất)
b) vì Oz là tia phân giác của góc \(\widehat{xOt}\)(gt)
=>\(\widehat{xOz}=\widehat{zOt}\)(tính chất)
mà \(\widehat{xOz}=\widehat{mOy}\left(cmt\right)\)
=>\(\widehat{zOt}=\widehat{mOy}\)
c)ta có
\(\widehat{yOz}=\widehat{zOt}+\widehat{tOy}\)
và \(\widehat{mOt}=\widehat{mOy}+\widehat{yOt}\)
vì \(\widehat{tOy}\)là góc chung, \(\widehat{zOt}=\widehat{mOy}\left(cmt\right)\)
=>\(\widehat{yOz}=\widehat{mOt}\)
a. Xét tg ABH vag tg CAI
Ta có: góc BAH = góc ACI=90 độ - góc IAC
AB=AC
góc AHB= góc CIA=90 độ
Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)
=> BH=AI
b. Ta có:BH=AI (chứng minh câu a)
AD+BH=IC+AI=AB=AC
=>\(BH^2+CI^2\) có giá trị không đổi
c. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD
AM vuông góc với DC =>AM là đường cao của tg ACD
Mà 2 đường cao CI và AM cắt nhau tại N
=>DN là đường cao thứ 3 của tg ACD
Vậy DN vuông góc với AC
d. AM vuông góc với BM
AI vuông góc với BH
=>góc MBH=góc MAI
Xét tg BHM và tg AIM
Ta có: BH=AI (chứng minh câu a)
Góc MBH=góc MAI(cmt)
BM=AM
Nên tg BHM=tg AIM(g.c.g)
=>HM=IM(1)
Góc BMH=góc AMI(2)
Từ (1) và (2) ta có:
Tg IMH vuông cân tại M
Vậy IM là tia phân giác của góc HIC
a,Do tam giác ABC là tam giác cân => AB = AC
Do AB = AC => AD = BD = AE = CE
Xét tam giác ABE và tam giác ACD có:
AB = AC (ở trên)
góc DAE là góc chung
AD = AE
=> tam giác ABE = tam giác ACD
b, Do tam giác ABE = tam giác ACD ( câu a)
=> BE = CD
c, nhác quá, bài này dài, tự làm đê