Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\frac{1}{3}\)= \(\frac{\sin\alpha}{\cos\alpha}\)
\(\cos\alpha\)= 3 \(\sin\alpha\)
ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)= \(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)= \(\frac{4\sin\alpha}{2\sin\alpha}\)= \(2\)
#mã mã#
ta có tan a.cot a=1
=>tan a= 1:cot a
thay vào pt ta được 1 : cot a+cot a=3
=> cot a=2,62
ta có \(cos\alpha=\frac{cos\alpha}{sin\alpha}=\frac{131}{50}\)
<=>\(\frac{cosa}{131}=\frac{sina}{50}\)
BP 2 vế :
\(\frac{cos^2a}{131^2}=\frac{sin^2a}{50^2}=\frac{cos^2a+sin^2a}{131^2+50^2}=\frac{1}{19661}\)
=>cos2a=0,873=>cos a=0,934
=>sin2a=0,127=>sin a = 0,356
===>A=sin a.cos a=0,356.0,934=0,332504
Tích nha bạn
Ta có \(tan^2\alpha+1=\frac{1}{cos^2\alpha}\Rightarrow\frac{1}{cos^2\alpha}=5\Rightarrow cos^2\alpha=\frac{1}{5}\)
Do \(tan\alpha=2\) nên \(cos\alpha\ne0\Rightarrow\frac{A}{cos^2\alpha}=\frac{sin^2\alpha+sin\alpha cos\alpha-3cos^2\alpha}{cos^2\alpha}=tan^2\alpha+tan\alpha-3=3\)
Vậy \(A=3.\frac{1}{5}=\frac{3}{5}\)