K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

\({x^4} + ax + b\) chia hết cho \({x^2} - 4\)

=> \({x^2} - 4\) là nghiệm của phương trình.

=> \(x^2 = 4\)

=> \(x=\left\{{}\begin{matrix}-2\\2\end{matrix}\right.\)

Thay x = -2 và x = -2 vào phương trình ta được hệ phương trình sau:

\(\left\{{}\begin{matrix}2a+b=-16\\-2a+b=-16\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=0\\a=-16\end{matrix}\right.\)

\(=> a - \dfrac{3}{2}b = 0 - \dfrac{3}{2}.( - 16) = 24\)

Nguồn: maytinhbotui.vn

3 tháng 6 2017

Do \(a^4+a.x+b\)

chia hết cho x^2 - 4

Mà x^2 - 4 = (x-2)(x+2)

=> \(f\left(x\right)=a^4+a.x+b\)

chia hết cho x - 2 và x+2

Áp dụng định lí Bezout

=>\(f\left(2\right)=a^4+2a+b=0\)

\(f\left(-2\right)=a^4-2a+b=0\)

=>\(a^4+b=2a=-2a\)

=> a=0

=>b=0

=> a-3/2b = 0

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

24 tháng 2 2017

lần sau bn gửi thêm thông tin vòng mấy hộ mik nhé, mik muốn biết câu hỏi ở vòng nào

28 tháng 2 2017

1 bạn ạk

17 tháng 8 2016

Ta có x^4-3x^3+3x^2+ax+b= (x-3x + 4)( x- 1) + (ax - 3x) + (b - 4)

Để đây là phép chia hết thì (ax - 3x) = 0 và (b - 4) = 0

Hay a=3 và b =4