\(\frac{3}{2}\)a biết a\(^4\)+ax+b ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

lần sau bn gửi thêm thông tin vòng mấy hộ mik nhé, mik muốn biết câu hỏi ở vòng nào

28 tháng 2 2017

1 bạn ạk

17 tháng 3 2017

dùng sơ đồ hocne với đồng nhất thử đi bạn

có lẻ đc đấy

17 tháng 3 2017

giải chi tiết ra đi bạn

6 tháng 8 2017

a) Đặt \(t=\sqrt{2x^2-3x+5}\ge0\) thì

\(2t=t^2-11\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1+2\sqrt{3}\\t=1-2\sqrt{3}\end{matrix}\right.\)

\(t\ge0\) nên \(t=1+2\sqrt{3}\)

\(\Rightarrow\sqrt{2x^2-3x+5}=1+2\sqrt{3}\)

\(\Leftrightarrow2x^2-3x+5=13-4\sqrt{3}\)

\(\Leftrightarrow2x^2-3x-8+4\sqrt{3}=0\)

Giải pt trên tìm được x

c) ĐK: \(x\ge0\)

Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)

pt trên đc viết lại thành

\(2b^2+2ab=4\left(a+b\right)\)

\(\Leftrightarrow\left(b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\a=-b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=-\sqrt{x+3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=x+3\end{matrix}\right.\)

Vậy pt có 1 nghiệm duy nhất x = 1.

6 tháng 8 2017

b) ĐK: tự làm

Ta có \(\left(x+5\right)\left(2-x\right)=-x\left(x+3\right)+10\)

Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)

pt trên đc viết lại thành

\(-a^2b^2+10=3ab\)

\(\Leftrightarrow-a^2b^2-3ab+10=0\) (*)

Đặt \(t=ab\ge0\) thì (*) \(\Rightarrow-t^2-3t+10=0\)

\(\Leftrightarrow\left[{}\begin{matrix}ab=t=2\\ab=t=-5\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x\left(x+3\right)}=2\)

Bạn tự làm tiếp nhé

26 tháng 3 2017

Dùng BĐT Bunhiacopski:

Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

\(\left(a+c\right)^2+\left(b+d\right)^2\)

\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)

26 tháng 3 2017

Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn

17 tháng 6 2016

oh má ơi

 

17 tháng 6 2016

Minh Hieu Nguyen:ầy đừng hốt có làm đc ko giúp tui với

13 tháng 5 2017

\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)

(AM-GM)

do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)

Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)

13 tháng 5 2017

u cha ông cx giỏi AM-GM z !!

7 tháng 6 2017

\(\sqrt{18-2\sqrt{65}}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{13}\right)^2}\)

\(=\sqrt{13}-\sqrt{5}\)

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

5 tháng 8 2016

a) \(\frac{4x}{\sqrt{7x-6}}+\frac{4\sqrt{7x-6}}{x}=8\) Đặt \(\frac{x}{\sqrt{7x-6}}=t\left(ĐK:t\ge0\right)\Leftrightarrow\frac{1}{t}=\frac{\sqrt{7x-6}}{x}\\ Pt\Leftrightarrow4t+\frac{4}{t}=8\Leftrightarrow4t^2+4-8t=0\Leftrightarrow t=1\left(tm\right)\)

Với 

\(t=1\Leftrightarrow\frac{x}{\sqrt{7x-6}}=1\Leftrightarrow x=\sqrt{7x-6}\Leftrightarrow x^2=7x-6\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=1\end{array}\right.\)

Vậy \(s=\left\{1;6\right\}\)

7 tháng 8 2016

Came ơn bạn nhìu nka =))))

20 tháng 2 2017

Điều kiện: \(\left\{\begin{matrix}x\ge0\\y\ge1\\z\ge2\end{matrix}\right.\)

Ta có: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)

\(\Leftrightarrow-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}+x+y+z=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(\Rightarrow x_0^2+y_0^2+z_0^2=1^2+2^2+3^2=14\)