\(\dfrac{1}{2\sqrt{x}-x}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

13 tháng 5 2017

\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)

(AM-GM)

do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)

Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)

13 tháng 5 2017

u cha ông cx giỏi AM-GM z !!

6 tháng 8 2017

a) Đặt \(t=\sqrt{2x^2-3x+5}\ge0\) thì

\(2t=t^2-11\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1+2\sqrt{3}\\t=1-2\sqrt{3}\end{matrix}\right.\)

\(t\ge0\) nên \(t=1+2\sqrt{3}\)

\(\Rightarrow\sqrt{2x^2-3x+5}=1+2\sqrt{3}\)

\(\Leftrightarrow2x^2-3x+5=13-4\sqrt{3}\)

\(\Leftrightarrow2x^2-3x-8+4\sqrt{3}=0\)

Giải pt trên tìm được x

c) ĐK: \(x\ge0\)

Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)

pt trên đc viết lại thành

\(2b^2+2ab=4\left(a+b\right)\)

\(\Leftrightarrow\left(b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\a=-b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=-\sqrt{x+3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=x+3\end{matrix}\right.\)

Vậy pt có 1 nghiệm duy nhất x = 1.

6 tháng 8 2017

b) ĐK: tự làm

Ta có \(\left(x+5\right)\left(2-x\right)=-x\left(x+3\right)+10\)

Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)

pt trên đc viết lại thành

\(-a^2b^2+10=3ab\)

\(\Leftrightarrow-a^2b^2-3ab+10=0\) (*)

Đặt \(t=ab\ge0\) thì (*) \(\Rightarrow-t^2-3t+10=0\)

\(\Leftrightarrow\left[{}\begin{matrix}ab=t=2\\ab=t=-5\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x\left(x+3\right)}=2\)

Bạn tự làm tiếp nhé

20 tháng 6 2017

\(C=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}.\sqrt{b}}\)

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}.\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}.\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}\\ =2\sqrt{b}\)

20 tháng 6 2017

thanghoamơn's'x's'x nhiều

5 tháng 3 2017

có thể cho mình biết bạn làm thế nào được không?

5 tháng 3 2017

\(\dfrac{1}{8}\)

19 tháng 3 2017

m=-5/4 đó bạn

19 tháng 3 2017

bạn giải như thế nào vậy

30 tháng 5 2017

\(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=|\sqrt{5}-1|\)

= \(\sqrt{5}-1\)

30 tháng 5 2017

cảm ơn bn nhiềuvui

7 tháng 6 2017

\(\sqrt{18-2\sqrt{65}}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{13}\right)^2}\)

\(=\sqrt{13}-\sqrt{5}\)