Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+9=0
=>x(x2+9)=0
=>x=0 hoặc x2+9=0
=>x2=-9 =>x=-3
Vậy nghiệm đa thức =-3 hoặc 0
Ta có x=17 => 18 = 17 + 1
Ta có :
A(x) = x^6 - 18x^5+ 18x^4-18x^3+18x^2-18x + 2
= 17^6-(17+1)*17^5+(17+1)*17^4-(17+1)*17^3+(17+1)*17^2-(17+1)*17+2
= 17^6-17^6-17^5+17^5+17^4-17^4-17^3+17^3+17^2-17^2-17+2
= -17+2
=-15
k cho mình nhé
Ta có :
5x3 - 9x = 0
x . ( 5x2 - 9 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\5x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{\frac{9}{5}}\text{ hoặc }x=-\sqrt{\frac{9}{5}}\end{cases}}\)
Ta có 5x3 - 9x =0
\(\Leftrightarrow\)x(5x2 - 9 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\5x^2-9=0\end{cases}}\)(hoặc nhá)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2=\frac{9}{5}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{9}{5}\\x=\frac{-9}{5}\end{cases}}\end{cases}}\) (hoặc hoặc đấy)
Vậy x\(\in\left\{\frac{-9}{5};0;\frac{9}{5}\right\}\)
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
Theo mình : bạn tác đôi 18x ra thành 9x - 9x rồi sử dụng tính chất phân phối .
a, M(x)=0<=>2x-\(\dfrac{1}{2}\)=0<=>2x=\(\dfrac{1}{2}\)<=>x=\(\dfrac{1}{4}\)
vậy...
b,N(x)=0<=>4x\(^2\)-1=0<=>4x\(^2\)=1<=>x\(^2\)=\(\dfrac{1}{4}\)=\((\pm\dfrac{1}{2})^2\)
=>x=\(\pm\dfrac{1}{2}\)
vậy ...
c,P(x)=0<=>9x\(^3\)-25x=0<=>x(9x\(^2\)-25)=0
<=>\(\left\{{}\begin{matrix}x=0\\9x^2-25=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=0\\x=\pm\dfrac{3}{5}\end{matrix}\right.\)
vậy ...
a)M(x)=2x-\(\dfrac{1}{2}\)
2x=\(\dfrac{1}{2}\)=0
2x=0+\(\dfrac{1}{2}\)
x=\(\dfrac{1}{2}\):2
x=\(\dfrac{1}{4}\)
vậy x=\(\dfrac{1}{4}\)là nghiệm của đa thức M(x)
ta có: \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(4x^3-7x^2+3x-12\right)+\left(-2x^3+2x^2+12+5x^2-9x\right)\)
\(=\left(4x^3-2x^3\right)+\left(-7x^2+2x^2+5x^2\right)-\left(9x-3x\right)+\left(12-12\right)\)
\(=-6x\)
Cho P(x) + Q(x) = 0
=> -6x = 0
x = 0
KL: x = 0 là nghiệm của P(x) + Q(x)
Ta có :P(x)+Q(x)= 4x3-7x2+3x-12+(-2x3+2x2+12+5x2-9x)
=2x3-10x2-6x
Nghiệm của ĐT P(x)+Q(x) là giá trị thỏa mãn P(x)+Q(x)=0
<=> 2x3-10x2-6x=0
<=>2x(x2-5x-3)=0
<=>2x=0(*) hoặc x2-5x -3=0(**)
Từ (*) ta có : 2x=0 => x=0(1)
Từ (**) ta có : x2-5x-3=0 => x(x-5-3)=0
=>x=0 hoặc x-5-3=0 => x=0 hoặc x=8(2)
Từ (1) và (2) => x=0 và x=8 là nghiệm của P(x)+Q(x)
Ta có: Q(-3) =\(\text{ (-3)}^3-9-\left(-3\right)=-27+27\)=0
Suy ra x = -3 là một nghiệm của đa thức Q(x).
Q(0)= 0 - 0 = 0
Suy ra x = 0 là một nghiệm của đa thức Q(x).
Q(3)=\(3^3-9-3=27-27=0\)
Suy ra x = 3 là một nghiệm của đa thức Q(x)
Cách 1 \(Q_x=x^3-9=x\left(x^2-9\right)=x\left(x-3\right)\left(x+3\right)\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
Cách 2 : Thay x = -3 vào đa thức ta có :
\(Q_{-3}=\left(-3\right)^2-9\left(-3\right)=-27+27=0\)
Thay x = 0 vào đa thức , ta có :
\(Q_0=0^3-9.0=0\)
Thay x = 3 vào đa thức , ta có :
\(Q_3=3^3-9.3=27-27=0\)
Vậy đa thức có 3 nghiệm là 0 ; -3 ; 3
Ta có: A(x)=0
\(\Rightarrow4x^3-9x^2=0\)
\(\Rightarrow x^2\left(4x-9\right)=0\)
\(\Rightarrow x^2=0\text{hoặc }4x-9=0\)
\(\Rightarrow x=0\text{hoặc }4x=9\)
\(\Rightarrow x=0\text{hoặc }x=\dfrac{9}{4}\)
Vậy \(x\in\left\{0;\dfrac{9}{4}\right\}\)là nghiệm của đa thức A(x)
Chúc bạn học tốt nha!!!
\(9x^3-18x=0\)
\(9x\left(x-2\right)=0\)
\(9x=0\) hoặc \(x-2=0\)
*) \(9x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy đa thức đã cho có nghiệm \(x=0;x=2\)
9\(x^3\) - 18\(x\) = 0
9.\(x\)(\(x^2\) - 2) = 0
\(\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {- \(\sqrt{2}\); 0; \(\sqrt{2}\)}