K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

\(\Delta ABC = \Delta MNP\) nên \(AC = MP\)và \(\widehat {MPN} = \widehat {ACB}\).

Vậy \(MP = 4\)cm và \(\widehat {ACB} = 45^\circ \).

17 tháng 9 2023

Ta có: \(\Delta ABC = \Delta MNP\) nên \(\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\).

Mà \(\widehat A + \widehat N = 125^\circ \)hay \(\widehat M + \widehat N = 125^\circ \). Tổng ba góc trong một tam giác bằng 180°.

Trong tam giác MNP:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = 180^\circ \\125^\circ  + \widehat P = 180^\circ \\ \to \widehat P = 180^\circ  - 125^\circ  = 55^\circ \end{array}\)

Vậy số đo góc P là 55°.

Xét ΔABC vuông tại A và ΔMNP vuông tại M có

AB=MN

BC=NP

Do đo: ΔABC=ΔMNP

17 tháng 9 2023

Ta có: \(\Delta ABC = \Delta MNP\) nên theo tính chất 2 tam giác bằng nhau, ta có:

\(\begin{array}{l}\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\\AB = MN,BC = NP,AC = NP.\end{array}\)

Mà AD và MQ lần lượt là phân giác của góc BAC và NMP nên \(\widehat {BAD} = \widehat {NMQ} = \dfrac{1}{2}\widehat {BAC} = \dfrac{1}{2}\widehat {NMP}\).

Xét hai tam giác ABD và MNQ có:

     \(\widehat {BAD} = \widehat {NMQ}\);

     AB = MN;

     \(\widehat B = \widehat N\).

Vậy \(\Delta ABD = \Delta MNQ\) (g.c.g) nên AD = MQ ( 2 cạnh tương ứng)

24 tháng 1 2019

đáp án

xét tam giác ABC và tam giác MNP có

góc M=góc A

MN=AP

BC=NP

nên tam giác ABC=tam giác MNP

1 tháng 7 2020

a/ Xét 2 tam giác vuông ΔABI và ΔDBI có:

Cạnh huyền BI chung

\(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)

=> ΔABI = ΔDBI (c.h - g.n)

b/ Có: ΔABI = ΔDBI (cmt)

=> AB = BD (2 cạnh tương ứng)

=> ΔABD cân tại B

Ta có: \(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)

=> BI là phân giác của \(\widehat{ABC}\)

Hay: BI là phân giác của \(\widehat{ABD}\)

Lại có: ΔABD cân tại B (cmt)

=> BI là đường trung trực của ΔABD

Hay: BI là đường trung trực của AD

c/ Ta có: ΔABI = ΔDBI (cmt)

=> AI = ID (2 cạnh tương ứng)

Xét ΔAIE và ΔDIC ta có:

\(\widehat{IAE}=\widehat{IDC}\left(=90^0\right)\)

AI = ID (cmt)

\(\widehat{AIE}=\widehat{DIC}\) (đối đỉnh)

=> ΔAIE = ΔDIC (g - c - g)

=> IE = IC (2 cạnh tương ứng)

ΔIDC vuông tại D

=> ID < IC (cạnh huyền > cạnh góc vuông)

Mà: IE = IC (cmt)

=> ID < IC

Bài 1: 

ΔABC=ΔDEF

nên \(\widehat{A}=\widehat{D}=90^0;\widehat{B}=\widehat{E};\widehat{C}=\widehat{F}\)

mà \(\widehat{B}-\widehat{C}=20^0\)

nên \(\widehat{E}-\widehat{F}=20^0\)

mà \(\widehat{E}+\widehat{F}=90^0\)

nên \(\widehat{E}=\dfrac{1}{2}\left(20^0+90^0\right)=55^0\)

=>\(\widehat{F}=35^0\)