Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC
Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiTrần Việt LinhHoàng Lê Bảo NgọcVõ Đông Anh TuấnPhương An
(ko vẽ hình và làm câu a,b,c cũng đc,chủ yếu là câu d mọi người giúp mk vs nhé)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét ΔABE và ΔHBE, có:
góc BAE = góc BHE = 90o (gt)
BE: chung
góc ABE = góc HBE ( BE là tia phân giác của góc ABC)
Vậy ΔABE = ΔHBE ( Cạnh huyền - góc nhọn)
b) Ta có: ΔABE = ΔHBE (cm câu a)
=> AB = HB ( 2 cạnh t/ư)
Vậy ΔABH là tam giác cân
c)Ta có: ΔABH cân tại B (cm câu b)
=> góc BAH = góc BHA ( 2 góc đáy của tam giác cân)
Mà: góc BAH = 65o (gt)
=> góc BHA = 65o
Do đó: góc ABH = 50o
Trong ΔABC, có:
góc A + góc B + góc C = 180o ( T/c tổng 3 góc của 1 tam giác)
Hay: 90o + 50o + góc C = 180o
góc C = 180o - 90o - 50o
=> góc C = 40o
Hay góc ACB = 40o (đpcm)
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) vuông \(ABE\) và \(HBE\) có:
\(\widehat{BAE}=\widehat{BHE}=90^0\)
\(\widehat{ABE}=\widehat{HBE}\) (vì \(BE\) là tia phân giác của \(\widehat{B}\))
Cạnh BE chung
=> \(\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)
b) Theo câu a) ta có \(\Delta ABE=\Delta HBE.\)
=> \(AB=HB\) (2 cạnh tương ứng)
=> \(\Delta ABH\) cân tại \(B.\)
Chúc bạn học tốt!
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó ΔABH=ΔACH
Suy ra: HB=HC
hay H là trung điểm của BC
b: TA có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Xét ΔADB và ΔBCA có
AD=BC
\(\widehat{DAB}=\widehat{CBA}\)
BA chung
Do đó: ΔADB=ΔBCA
Xét tứ giác ADBC có
AD//BC
AD=BC
Do đó: ADBC là hình bình hành
Suy ra: AC//BD