Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
1 :\(\frac{7}{20}\)
2 \(\frac{1}{4}\)
3 \(\frac{23}{2}\)
4 2187
5 64
6 x=16
7 x=\(\frac{-1}{243}\)
8 mϵ∅
cho mình hỏi cài này là j vậy
Đề 2
1) \(\frac{7}{20}.\)
2) \(\frac{1}{4}.\)
3) \(\frac{23}{2}.\)
4) \(2187.\)
5) \(64.\)
6) \(x=16.\)
7) \(x=\left(-\frac{1}{3}\right)^5\)
8) \(m\in\varnothing.\)
Chúc bạn học tốt!
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
mà \(x-y-z=0\Rightarrow x=y+z;y=x-z;-z=y-x\)
Thay x;y;z vào A ta được \(A=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) (với \(a = - \frac{1}{6}\))
\(=(- \frac{1}{6})^{3. 4}=(- \frac{1}{6})^{12}\)
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) (với \(a = - 0,2\))
\(=(-0,2)^{4.5}=(-0,2)^{20}\)
|x-4| > 0với mọi x
=>|x-4|+1>1 với mọi x
=>\(A=\frac{-15}{\left|x-4\right|+1}\le\frac{-15}{1}=-15\)
=>Amax=-15
GTLN chứ?
\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)
\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)
Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)
vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)
\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi
\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)
\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)
a)Ta có: |x+15/19|>=0(với mọi x)
hay M>=0
Nên GTNN của M là 0 khi:
x+15/19=0
x=0-15/19
x=-15/19
Vậy GTNN của M là 0 khi x=-15/19
b)Ta có: |x-4/7|>=0(với mọi x)
=>|x-4/7|-1/2>=1/2 hay N>=-1/2
Nên GTNN của N là -1/2 khi:
x-4/7=0
x=0+4/7
x=4/7
Vậy GTNN của N là -1/2 khi x=4/7
a) GTNN là 0 tại x= -15/19
b) GTNN là -1/2 tại x= 4/7
sửa đề:tìm GTLN của A thì đúng hơn
A đạt GTLN <=>|x-4|+1 đạt GTNN
|x-4| >= 0 với mọi x
=>|x-4|+1 >= 1 với mọi x
=>GTNN của biểu thức trên là 1
do đó GTLN của A=-15/1=-15
dấu "=" xảy ra<=>x-4=0<=>x=1
KL:...