Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tính chất: Hiệu của một số với tổng các chữ số của nó chia hết cho 9
( xem cách chứng minh tại link Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath )
Do đó ta có:
\(A-S\left(A\right)⋮9\)
\(S\left(A\right)-S\left(S\left(A\right)\right)⋮9\)
\(S\left(S\left(A\right)\right)-S\left(S\left(S\left(A\right)\right)\right)⋮9\)
=> Cộng lại và triệt tiêu ta có: \(A-S\left(S\left(S\left(A\right)\right)\right)⋮9\)(1)
Ta có: \(A=2^{100}=2.2^{99}=2.8^{33}\)=> Số chữ số của A < 34
=> \(S\left(A\right)< 34.9=306\)
=> \(S\left(S\left(A\right)\right)< 3.9=27\)
=> \(S\left(S\left(S\left(A\right)\right)\right)< 2.9=18\) (2)
Mặt khác \(A=2^{100}=2.2^{99}=2.8^{33}\equiv2\left(-1\right)^{33}\equiv-2\equiv7\left(mod9\right)\)
=> \(A-7⋮9\)(3)
Từ (1); (2); (3) => S(S(S(A))) có thể bằng 7 hoặc 16
=> S(S(S(S(A)))) = 7
:)))) . Bài này thú vị quá! <3
Câu 2.
Câu hỏi của hoang the cuong - Toán lớp 8 - Học toán với OnlineMath
Ta giải như sau :
Ta có \(S\left(n\right)+n=2015\)(1)
\(\Rightarrow n< 2015\)(2)
Mặt khác ta lại có : \(S\left(n\right)\le1+9.3=28\)
\(\Rightarrow n\ge2015-28=1987\)(3)
Từ (2) và (3) ta có : \(1987\le n< 2015\)
Do đó ta xét n trong khoảng trên được n = 2011 và n = 1993 là đáp số của bài.
a,
\(2^2=\left(1+1\right)^2=1^2+2.1+1\)
\(3^2=\left(2+1\right)^2=2^2+2.2+1\)
....
\(\left(n+1\right)^2=n^2+2n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)
\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)
\(\Leftrightarrow2S=\left(n+1\right)n\)
\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)
b, Tương tự a
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
...
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)
\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)
\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)
\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)
\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
1) Ta có: S = BH x (BC + DA) : 2
+ BCKH là hình chữ nhật nên BC = KH = x
+ BH = x
+ AD = AH + HK + KD = 7 + x + 4 = 11 + x.
Vậy S = BH x (BC + DA) : 2 = x.(x + 11 + x) : 2 = x.(2x + 11) : 2.
2) S = SABH + SBCKH + SCKD
+ ABH là tam giác vuông tại H
⇒ SBAH = 1/2.BH.AH = 1/2.7.x = 7x/2.
+ BCKH là hình chữ nhật
⇒ SBCKH = x.x = x2.
+ CKD là tam giác vuông tại K
⇒ SCKD = 1/2.CK.KD = 1/2.4.x = 2x.
Do đó: S = SABH + SBCKH + SCKD = 7x/2 + x2 + 2x = x2 + 11x/2.
- Với S = 20 ta có phương trình:
Hai phương trình trên tương đương với nhau. Và cả hai phương trình trên đều không phải là phương trình bậc nhất.
a) - Xét tứ giác AMCI , có :
+ AM // CI ( GT )
+ AM = CI ( GT )
=> AMCI là hình bình hành ( 2 cạnh đối song song và bằng nhau )
=> AI // MC hay EH // FG (1)
- XÉt tứ giác BNDK có :
+ BN // DK ( GT )
+ BN = DK ( GT : N , K lần lượt là trung điểm BC , DA và BC = DA )
=> BNDK là hình bình hành ( 2 cạnh đối song song và bằng nhau )
=> BK // DN hay EF // HG ( 2)
- Từ 1 và 2 ta có : EFGH là hình bình hành ( các cặp cạnh đối song song )
- Kẻ FQ vuông góc AI tai Q
=> \(S_{EFGH\:}=FQ.EH\)
- Mặt khác : \(S_{AMCI}=FQ.AI\)( Vì MC // AI nên FQ là đường cao chung )
=> \(\frac{S_{EFGH\:}}{S_{AMCI}}=\frac{FQ.EH}{FQ.AI}=\frac{EH}{AI}\)(3)
- LẠi có :
+ Xét tam giác AHD có : KE // DH và K là trung điểm của AD nên => E là trung điểm của AH hay AE = EH
+ Xét tam giác DCG có : HI // CG , I là trung điểm của DC nên => H là trung diểm của DG => HI là đường trung bình của tam giác DCG => \(HI=\frac{1}{2}.CG\)mà CG = FG = EH nên \(HI=\frac{1}{2}.EH\)
=> \(AI=AE+EH+HI=2.EH+\frac{1}{2}.EH=\frac{5.EH}{2}\)
Thay vào 3 , ta được :
\(\frac{S_{EFGH\:}}{S_{AMCI}}=\frac{EH}{AI}=EH:\frac{5.EH}{2}=\frac{2.EH}{5.EH}=\frac{2}{5}\)
b) - Kẻ AP vuông góc với CD tại Q
- Ta có : \(S_{ABCD}=AP.CD\)và \(S_{AMCI}=AP.CI\)
=> \(\frac{S_{AMCI}}{S_{ABCD}}=\frac{AP.CI}{AP.CD}=\frac{CI}{CD}=\frac{1}{2}\Rightarrow S_{AMCI}=\frac{1}{2}.S_{ABCD}\)
Từ ý a , ta có : \(S_{EFGH\:}=\frac{2}{5}.SAMCI=\frac{2}{5}.\frac{1}{2}.S_{ABCD}=\frac{1}{5}.S_{ABCD}\)
MÀ ABCD có diện tích là S nên \(S_{EFGH\:}=\frac{1}{5}.S\)