K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

có bạn nào giải hộ mik nhé!

12 tháng 9 2019

Ta có tính chất: Hiệu của một số với tổng các chữ số của nó chia hết cho 9

( xem cách chứng minh tại link Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath )

Do đó ta có:

 \(A-S\left(A\right)⋮9\)

\(S\left(A\right)-S\left(S\left(A\right)\right)⋮9\)

\(S\left(S\left(A\right)\right)-S\left(S\left(S\left(A\right)\right)\right)⋮9\)

=> Cộng lại và triệt tiêu ta có: \(A-S\left(S\left(S\left(A\right)\right)\right)⋮9\)(1)

Ta có: \(A=2^{100}=2.2^{99}=2.8^{33}\)=> Số chữ số của A < 34

=> \(S\left(A\right)< 34.9=306\)

=> \(S\left(S\left(A\right)\right)< 3.9=27\)

=> \(S\left(S\left(S\left(A\right)\right)\right)< 2.9=18\) (2)

Mặt khác \(A=2^{100}=2.2^{99}=2.8^{33}\equiv2\left(-1\right)^{33}\equiv-2\equiv7\left(mod9\right)\)

=> \(A-7⋮9\)(3)

Từ (1); (2); (3) => S(S(S(A))) có thể bằng 7 hoặc 16

=> S(S(S(S(A)))) = 7

:)))) . Bài này thú vị quá! <3

18 tháng 9 2019

1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

22 tháng 7 2020

Ta thấy: \(2017^{2016}\equiv1\)(mod 6)

Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)

Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6

Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên

Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)

Vậy \(\text{Σ}n_i^3\)chia 6 dư 1

22 tháng 7 2020

ta có: \(N=2017^{2016}\)

xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a

đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)

\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)

\(\Rightarrow S-N⋮6\)

=> S và N cùng số dư khi chia cho 6

thấy 2017 chia 6 dư 1

20172016 chia 6 dư 1 => N chia 6 dư 1

=> S chia 6 dư 1

9 tháng 8 2016

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên

       * Vậy A chia hết cho 27

9 tháng 8 2016

Đây là toán lớp 7 chứ toán 8 gì hum
 

23 tháng 4 2020

Với a\(\in\)Z thì a3-a=(a-1)a(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2,3

Mà (2,3)=1 => a3-a chia hết cho 6

=> S-P=(a13-a1)+(a23-a2)+....+(an3-an) chia hết cho 6

Vậy S chia hết cho 6 <=> P chia hết cho 6

13 tháng 8 2016

Bạn xem lại đề nha. 

Với n=0 thì điều phải chứng minh là sai

13 tháng 8 2016

Bạn thử với n=1 nhá. n thuộc Z