Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: DKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(A=\left(\dfrac{x}{\left(x-3\right)\left(x+3\right)}+\dfrac{-1}{x-3}\right)\cdot\dfrac{x+3}{3}\)
\(=\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{3}=\dfrac{-1}{x-3}\)
c: Thay x=5 vào A, ta được:
\(A=\dfrac{-1}{5-3}=-\dfrac{1}{2}\)
d: Để A là số nguyên thì \(x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)
ab, đk x khác 3 ; -3
\(A=\left(\dfrac{x}{x^2-9}-\dfrac{1}{x-3}\right):\dfrac{3}{x+3}\Leftrightarrow=\left(\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{3}{x+3}=-\dfrac{1}{x-3}\)
c, x^2 - 8x + 15 = 0 <=> (x-3)(x-5) = 0 <=> x = 3 (ktm) ; x= 5
Thay x = 5 vào A ta được : A =-1/2
d, \(\Rightarrow x-3\inƯ\left(-1\right)=\left\{\pm1\right\}\)
TH1 : x - 3 = 1 <=> x = 4
TH2 : x - 3 = -1 <=> x = 2
đk: x khác -3; 2
b)\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
c) A=3/4 <=> \(\frac{x-4}{x-2}=\frac{3}{4}\Leftrightarrow4x-16=3x-6\) tự giải pt này ra x nha
d) \(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)=> A thuộc Z <=> 2/x-2 thuộc Z( 1 thuộc Z rồi) => x-2 thuộc Ư(2) <=> x-2 thuộc (+-1;+-2)
x-2 | 1 | -1 | 2 | -2 |
x | 3(t/m) | 1(t/m) | 4(t/m) | 0(t/m) |
=> Vậy..
e) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=+-3\)thay lần lượt vào A rồi tính nha
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
ĐKXĐ: \(x\ne0;x\ne\pm2\)
a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)
\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)
b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)
Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)
Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)
c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy x=3/2 thì A=2
d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy với x>2 thì A<0
e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}
Ta có: x-2=1 => x=3 (t/m)
x-2=-1 => x=1 (t/m)
Vậy x thuộc {3;1} thì A thuộc Z
a) \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)
\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)
\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)
Vậy \(A=\frac{1}{2-x}.\)
b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)
Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...
c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...
d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...
e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)
Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)
Vậy x=1 hay x=3 thì A nguyên.
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}\)
a,\(ĐKXĐ:x\ne0;x\ne3;x\ne1\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}=\left(\frac{9}{x\left(x-3\right)}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3\left(1-x\right)}\)
\(=\left(\frac{9+\left(x-2\right)\left(x-3\right)-x.x}{x\left(x-3\right)}\right).\frac{x}{3\left(1-x\right)}=\frac{9+x^2-5x+6-x^2}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}\)
\(=\frac{-5x+15}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=\frac{-5\left(x-3\right)}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=-\frac{5}{3\left(1-x\right)}\)
b, \(x=\frac{1}{2}\)
\(\Rightarrow P=-\frac{5}{3\left(1-\frac{1}{2}\right)}=-\frac{5}{3.\frac{1}{2}}=-5:\frac{3}{2}=-\frac{10}{3}\)
c, Để \(P\in z\)thì \(3\left(1-x\right)\inƯ\left(5\right)=\left(-5;-1;1;5\right)\)
\(3\left(1-x\right)=-5\Rightarrow1-x=-\frac{5}{3}\Rightarrow x=\frac{8}{3}\)
\(3\left(1-x\right)=-1\Rightarrow1-x=-\frac{1}{3}\Rightarrow x=\frac{4}{3}\)
\(3\left(1-x\right)=1\Rightarrow1-x=\frac{1}{3}\Rightarrow x=\frac{2}{3}\)
\(3\left(1-x\right)=5\Rightarrow1-x=\frac{5}{3}\Rightarrow x=-\frac{2}{3}\)
a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)
c: Để A=3/4 thì 4x-8=3x+6
=>x=14
d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)