Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)
\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)
Đề sai à ??
a: \(M=1:\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=1:\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}=\dfrac{x^2+x+1}{x}\)
b: \(M-3=\dfrac{x^2-2x+1}{x}=\dfrac{\left(x-1\right)^2}{x}>0\)
=>M>3
e: Khi x=1/4 thì \(M=\dfrac{\dfrac{1}{16}+\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{21}{4}\)
a: \(B=\left(\dfrac{x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{10}{5\left(x+2\right)}+\dfrac{1}{x-2}\right):\dfrac{x^2-4+6-x^2}{x-2}\)
\(=\left(\dfrac{1}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x+2}+\dfrac{1}{x-2}\right):\dfrac{2}{x-2}\)
\(=\dfrac{1-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2}=\dfrac{-x+7}{2\left(x+2\right)}\)
b: Ta có: |x|=1/2
=>x=1/2 hoặc x=-1/2
Thay x=1/2 vào B, ta được:
\(B=\dfrac{-\dfrac{1}{2}+7}{2\left(\dfrac{1}{2}+2\right)}=\dfrac{13}{10}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{\dfrac{1}{2}+7}{2\left(-\dfrac{1}{2}+2\right)}=\dfrac{5}{2}\)
\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)
\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)
Giải các câu khác giúp mình với