Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x/2=-5/y
=>xy=-10
=>\(\left(x,y\right)\in\left\{\left(1;-10\right);\left(-10;1\right);\left(-1;10\right);\left(10;-1\right);\left(2;-5\right);\left(-5;2\right);\left(-2;5\right);\left(5;-2\right)\right\}\)
b: =>xy=12
mà x>y>0
nên \(\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
c: =>(x-1)(y+1)=3
=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)
d: =>y(x+2)=5
=>\(\left(x+2;y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-1;5\right);\left(3;1\right);\left(-3;-5\right);\left(-7;-1\right)\right\}\)
\(\Leftrightarrow y\left(x+1\right)+2\left(x+1\right)+9=0\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=-9\)
Để x;y nguyên thì:
\(\left\{{}\begin{matrix}x+1=3\\y+2=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-3\\y+2=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=1\\y+2=-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-9\\y+2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-1\\y+2=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=9\\y+2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-3\end{matrix}\right.\)
Ta co : \(\left|x+25\right|\ge0\forall x\in Z\)
\(\left|-y+5\right|\ge0\forall x\in Z\)
Mà : |x + 25| + |-y + 5| = 0
Nên : \(\hept{\begin{cases}\left|x+25\right|=0\\\left|-y+5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+25=0\\-y+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-25\\y=5\end{cases}}\)
\(a,\Leftrightarrow\dfrac{\left(n+15\right)\left(15-n+1\right)}{2}=0\\ \Leftrightarrow\left[{}\begin{matrix}n=-15\\n=14\left(l\right)\end{matrix}\right.\Leftrightarrow n=-15\\ b,\Leftrightarrow\dfrac{\left(35+n\right)\left(35-n+1\right)}{2}=0\\ \Leftrightarrow\left[{}\begin{matrix}n=-35\left(n\right)\\n=34\left(l\right)\end{matrix}\right.\Leftrightarrow n=-35\)
a)
\(\left(x+1\right)\left(y-2\right)=5\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng:
x+1 | 1 | -1 | 5 | -5 |
y-2 | 5 | -5 | 1 | -1 |
x | 0 | -2 | 4 | -6 |
y | 7 | -3 | 3 | 1 |
Vậy \(\left(x;y\right)=\left(0;7\right),\left(-2;-3\right),\left(4;3\right),\left(-6;1\right)\)
b)
\(\left(x-5\right)\left(y+4\right)=-7\\ \Rightarrow\left(x-5\right),\left(y+4\right)\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Ta có bảng:
x-5 | 1 | -1 | 7 | -7 |
y+4 | -7 | 7 | -1 | 1 |
x | 6 | 4 | 12 | -2 |
y | -11 | 3 | -5 | -3 |
Vậy \(\left(x;y\right)=\left(6;-11\right),\left(4;3\right),\left(12;-5\right),\left(-2;-3\right)\)
\(\text{x + y +xy =40}\)
\(\Rightarrow\left(x+1\right).\left(y+1\right)=40\)
\(40=40.1=1.40=-1.\left(-40\right)=-40.\left(-1\right)\)
\(\left(x+1\right).\left(y+1\right)=40.1\)
\(\Rightarrow\orbr{\begin{cases}x+1=40\\y+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=39\\y=0\end{cases}}}\)
\(\left(x+1\right).\left(y+1\right)=1.40\)
\(\Rightarrow\orbr{\begin{cases}x+1=1\\y+1=40\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\y=39\end{cases}}}\)
\(\left(x+1\right).\left(y+1\right)=-1.\left(-40\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=-1\\y+1=-40\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=-41\end{cases}}}\)
\(\left(x+1\right).\left(y+1\right)=-40.\left(-1\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=-40\\y+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-41\\y=-2\end{cases}}}\)
Vậy ....
học tốt
a, Vì \(\left|x-1\right|\ge0\)\(\forall x\inℤ\); \(\left|y+2\right|\)\(\forall y\inℤ\)
\(\Rightarrow\left|x-1\right|+\left|y+2\right|\ge0\)\(\forall x,y\inℤ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy...
b, Vì \(\left|x+35-40\right|=\left|x-5\right|\ge0\)\(\forall x\inℤ\)
\(\left|y+10-x\right|\ge0\)\(\forall x,y\inℤ\)
\(\Rightarrow\left|x-5\right|+\left|y+10-x\right|\ge0\)\(\forall x,y\inℤ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5=0\\y+10-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y-x=-10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y-5=-10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-5\end{cases}}\)
Vậy...