K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2020

Với mọi x;y;z ta luôn có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)

\(B_{max}=3\) khi \(x=y=z=1\)

17 tháng 5 2020

Cảm ơn nhiều lắm ạ eoeo

1 tháng 5 2020

Bạn ấy mới trả lời 1 ý thôi, nên mình phải đăng ý còn lại.. Câu đấy mình hỏi mà Nhi Trần

8 tháng 12 2021

\(ĐK:x\ne\dfrac{1}{2};x\ne1;x\ne\dfrac{3}{2};x\ne2;x\ne\dfrac{5}{2}\\ PT\Leftrightarrow\dfrac{1}{\left(2x-1\right)\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(3x-2\right)}+\dfrac{1}{\left(3x-2\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(5x-2\right)}=\dfrac{4}{21}\\ \Leftrightarrow2\left[\dfrac{\dfrac{1}{2}}{\left(x-\dfrac{1}{2}\right)\left(x-1\right)}+\dfrac{\dfrac{1}{2}}{\left(x-1\right)\left(x-\dfrac{3}{2}\right)}+\dfrac{\dfrac{1}{2}}{\left(x-\dfrac{3}{2}\right)\left(x-2\right)}+\dfrac{\dfrac{1}{2}}{\left(x-2\right)\left(x-\dfrac{5}{2}\right)}\right]=\dfrac{4}{21}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-\dfrac{1}{2}}+\dfrac{1}{x-\dfrac{3}{2}}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-\dfrac{3}{2}}+\dfrac{1}{x-\dfrac{5}{2}}-\dfrac{1}{x-2}=\dfrac{2}{21}\\ \Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-\dfrac{5}{2}}=\dfrac{2}{21}\\ \Leftrightarrow\dfrac{x-\dfrac{5}{2}-x+1}{\left(x-1\right)\left(x-\dfrac{5}{2}\right)}=\dfrac{2}{21}\\ \Leftrightarrow\dfrac{-\dfrac{3}{2}}{x^2-\dfrac{7}{2}x+\dfrac{5}{2}}=\dfrac{2}{21}\\ \Leftrightarrow x^2-\dfrac{7}{2}x+\dfrac{5}{2}=-\dfrac{63}{4}\\ \Leftrightarrow4x^2-14x+10=-63\\ \Leftrightarrow4x^2-14x+73=0\\ \Leftrightarrow x\in\varnothing\)

23 tháng 6 2023

loading...  đây nhé làm 3 bài đầu 

5:

B=(x+y)^2-2xy

=225-2*(-100)=425

6:

a: C=(39+61)^2=100^2=10000

b: D=50^2-50^2+1=1

NV
18 tháng 5 2020

ĐKXĐ: \(x\ne\pm2\)

\(\Leftrightarrow\left(2x-m\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)=3\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow x\left(1-m\right)=2m-14\)

- Với \(m=1\) pt vô nghiệm

- Với \(m\ne1\Rightarrow x=\frac{2m-14}{1-m}\)

Để pt có nghiệm dương: \(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-14}{1-m}>0\\\frac{2m-14}{1-m}\ne2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1< m< 7\\m\ne4\end{matrix}\right.\)