Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích khối cầu là: \(\frac{4}{3}\pi R^3\)
Độ dài cạnh hình vuông là: \(R\sqrt{2}\).
Thể tích của khối trụ là: \(\left(\frac{R\sqrt{2}}{2}\right)^2\pi\left(R\sqrt{2}\right)=\frac{\pi R^3\sqrt{2}}{2}\)
Phần thể tích khối cầu nằm ngoài khối trụ là: \(\frac{\pi R^3}{6}\left(8-3\sqrt{2}\right)\).
Ta có : \(S_{xq}=2\pi Rh=128\pi\)
=> \(Rh=64\)
Mà R = h
=> \(R^2=h^2=64\)
=> R = h = 8 ( cm )
=> \(V=\pi R^2h=\pi8^2.8=512\pi\left(cm^3\right)\)
Đáp án thiếu pi bạn ới
\(K=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(K\le\frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}\le\frac{1}{2}\Leftrightarrow2\sqrt{x}-2\le\sqrt{x}+1\) (do \(\sqrt{x}+1>0;\forall x\))
\(\Leftrightarrow\sqrt{x}\le3\Rightarrow x\le9\)
\(\Rightarrow x=\left\{2;3;4;5;6;7;8;9\right\}\Rightarrow T=44\)
\(C=sin^2a\left(1-\frac{sina.cosa}{sin^2a}+\frac{cos^2a}{sin^2a}\right)\)
\(=\frac{1}{1+cot^2a}\left(1-cota+cot^2a\right)\)
\(=\frac{1}{1+5}\left(1-\sqrt{5}+5\right)=\frac{6-\sqrt{5}}{6}\)
bài đó mình cũng biết làm nhưng dài lắm nếu bn muốn biêt mình gợi ý cho
Bài này dài dòng lắm bạn ạ viết cũng phải chết mỏi
Ủng hộ nha
Ta có : R = \(\frac{1}{2}BC=\frac{1}{2}2=1\left(cm\right)\)
- Áp dụng định lý pi ta go : \(AH=\sqrt{AB^2-BH^2}=\sqrt{3}\) ( cm )
-> \(V=\frac{\pi R^2h}{3}=\frac{\pi1^2.\sqrt{3}}{3}=\frac{\pi\sqrt{3}}{3}\left(cm^3\right)\)
Vậy đáp án D .