K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

- TXĐ : R ( \(y=-\sqrt{2}x+1\) )

+, Cho x = 0 => y = 1 => Điểm ( 0; 1 )

+, Cho y = 0 => x = \(\frac{1}{\sqrt{2}}\) => Điểm \(\left(\frac{1}{\sqrt{2}};0\right)\)

- Ta có : \(\left\{{}\begin{matrix}OA=\left|1\right|=1\\OB=\left|\frac{1}{\sqrt{2}}\right|=\frac{1}{\sqrt{2}}\end{matrix}\right.\)

- Áp dụng tỉ số lượng giác vào tam giác OAB vuông tại O, đường cao OH được :

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{1^2}+\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^2}=3\)

=> \(OH^2=\frac{1}{3}\)

=> \(OH=\frac{1}{\sqrt{3}}\)

Vậy đáp án là A . d = \(\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

Gọi khoảng cách từ $O$ đến $(d)$ là $h$ thì:

$\frac{1}{h^2}=\frac{m^2-2m+2}{16m^2}$

Giải thích: Bạn tham khảo tại link sau:

Câu hỏi của Rồng Xanh - Toán lớp 9 | Học trực tuyến

Để $h$ max thì $\frac{1}{h^2}=\frac{m^2-2m+2}{16m^2}$ min

Ta thấy: $\frac{m^2-2m+2}{16m^2}=\frac{1}{16}-\frac{1}{8m}+\frac{1}{8m^2}=\frac{1}{8}(\frac{1}{m}-\frac{1}{2})^2+\frac{1}{32}\geq \frac{1}{32}$

$\Rightarrow h^2\leq 32\Leftrightarrow h\leq 4\sqrt{2}$

Tức $h_{\max}=4\sqrt{2}$

Đáp án C.

 

28 tháng 7 2023

c

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

27 tháng 5 2017

chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương

\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)

\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)

\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)

\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)

CÂU CUỐI chưa làm đc

28 tháng 5 2017

ý cuối cùng này :

\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có

\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)

\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)

\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)