K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 7 2020

\(K=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\left(\sqrt{a}-1\right)\)

\(=\frac{a-1}{\sqrt{a}}\Rightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\Rightarrow m^2+n^2=2\)

\(A=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\Rightarrow\left\{{}\begin{matrix}m=0\\n=-2\end{matrix}\right.\Rightarrow m-n=2\)

12 tháng 7 2020

Cảm ơn bạn nha ;)

Câu 1: Tập nghiệm của phương trình \(\sqrt{x^2+1}=\sqrt{x+1}\) là: A. \(\left\{0\right\}\) B. \(\left\{0;-1\right\}\) C. \(\left\{1\right\}\) D. \(\left\{0;1\right\}\) Câu 2: Cho tam giác ABC có AC = \(\sqrt{2};\widehat{BAC}=105^0;\widehat{ACB}=30^0\). Tính độ dài cạnh BC. A. \(\frac{\sqrt{6}-\sqrt{2}}{2}\) B. \(\frac{\sqrt{6}}{2}\) C. \(\frac{1+\sqrt{3}}{2}\) D. \(\frac{\sqrt{2}+\sqrt{6}}{2}\) Câu 3: Với \(\alpha\) nhọn, biết...
Đọc tiếp

Câu 1: Tập nghiệm của phương trình \(\sqrt{x^2+1}=\sqrt{x+1}\) là:

A. \(\left\{0\right\}\)

B. \(\left\{0;-1\right\}\)

C. \(\left\{1\right\}\)

D. \(\left\{0;1\right\}\)

Câu 2: Cho tam giác ABC có AC = \(\sqrt{2};\widehat{BAC}=105^0;\widehat{ACB}=30^0\). Tính độ dài cạnh BC.

A. \(\frac{\sqrt{6}-\sqrt{2}}{2}\)

B. \(\frac{\sqrt{6}}{2}\)

C. \(\frac{1+\sqrt{3}}{2}\)

D. \(\frac{\sqrt{2}+\sqrt{6}}{2}\)

Câu 3: Với \(\alpha\) nhọn, biết \(\sin\alpha-\cos\alpha=\frac{3}{5}.\) Tính giá trị biểu thức E = \(\sin\alpha.\cos\alpha\)

A. \(\frac{5}{8}\)

B. \(\frac{8}{25}\)

C. \(\frac{1}{5}\)

D. \(\frac{2}{5}\)

Câu 4: Cho tam giác ABC cân tại A có \(\widehat{BAC}=45^0\) và AB = a. Tính BC theo a.

A. \(a\sqrt{2-\sqrt{2}}\)

B. \(a\sqrt{2+\sqrt{2}}\)

C. \(a\sqrt{2}\)

D. \(a\left(2+\sqrt{2}\right)\)

Câu 5: Cho \(P=3\sqrt{x-5}+4\sqrt{9-x}\) (với \(5\le x\le9\)). Gọi a, b lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P. Tính a2 + b2.

A. 100

B. 16

C. 136

D. 164

Các bạn giải chi tiết ra rồi mới chọn đáp án nhé!!! Thank you!!!

3

Câu 1 a

Câu 2 d

Câu 3 b

Câu 4 a

Câu 5 b

21 tháng 6 2020

Nguyễn Việt Lâm

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

a)

\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)

\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)

\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)

b)

\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)

\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)

\(=32+8\sqrt{15}-8\sqrt{15}=32\)

c)

\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)

\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)

\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

d)

\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)

\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)

\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)

e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa

f)

\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)

\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)

\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)

20 tháng 10 2018

 a) \(\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7\left(\sqrt{3}+\sqrt{5}\right)}}=\) \(\frac{\sqrt{2}}{\sqrt{7}}\)

 b ) \(\frac{15\sqrt{2}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=\frac{3\left(5\sqrt{2}+3\sqrt{3}\right)}{3\left(\sqrt{3}+\sqrt{5}\right)}\)\(=\frac{5\sqrt{2}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)

c)\(\frac{\sqrt{2}-\sqrt{6}+\sqrt{3}-\sqrt{9}+\sqrt{4}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) =  \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)+\sqrt{3}\left(1-\sqrt{3}\right)+\sqrt{4}\left(1-\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)\(=\frac{\left(1-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)

 d) \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)

2 tháng 7 2019

ĐKXĐ: x\(\ge0\)

a/ \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)=x-17\)

\(\Leftrightarrow x-2\sqrt{x}-15=x-17\)

\(\Leftrightarrow-2\sqrt{x}=-2\Leftrightarrow x=1\)

b/ \(\frac{6-2\sqrt{x}+5}{6}=\frac{3-\sqrt{x}}{4}\)

\(\Leftrightarrow22-4\sqrt{x}=9-3\sqrt{x}\)

\(\Leftrightarrow x=169\)

c/ \(\Leftrightarrow x+6\sqrt{x}+9-x+3=0\)

\(\Leftrightarrow x=6\sqrt{x}=-12\) (vô lí)

Vây...