
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)Ta có: \(14x=12y\Rightarrow\frac{x}{12}=\frac{y}{14}=\frac{x-y}{12-14}=\frac{-10,2}{-2}=5,1\)
\(\Rightarrow x=5,1.12=61,2\)
\(y=5,1.14=71,4\)
b) Ta có: \(\left(x-5\right)^{2016}-\left|y^2-4\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\y^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\y^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\y=\pm2\end{cases}}}\)
Vậy....

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

A C B M H K G I
a) Xét tam giác MHB và MKC có:
BM = CM (gt)
HM = KM (gt)
\(\widehat{BMH}=\widehat{CMK}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta BMH=\Delta CMK\left(c-g-c\right)\)
b) Ta thấy KH // CA (Vì cùng vuông góc với AB)
\(\Rightarrow\widehat{KHC}=\widehat{ACH}\) (Hai góc so le trong)
Lại có \(\Delta BMH=\Delta CMK\Rightarrow\widehat{HKC}=\widehat{KHB}=90^o\)
Xét tam giác vuông HKC và CAH có:
Cạnh HC chung
\(\widehat{KHC}=\widehat{ACH}\)
\(\Rightarrow\Delta HKC=\Delta CAH\) (Cạnh huyền góc nhọn)
\(\Rightarrow HK=AC\)
c) Ta có tam giác AMB cân tại M có MH là đường cao nên đồng thời là trung tuyến. Vậy H là trung điểm AB
Xét tam giác ABC có AM, CH là trung tuyến nên G là trọng tâm.
Vậy thì BG là trung tuyến hay I là trung điểm AC.
MHB=MKC ( cạnh góc cạnh ) bài dễ vcl mà éo làm được
b) có tam giác HMA=KMC ( cạnh góc cạnh )
suy ra H=K=90 độ
suy ra HKCA là hình chữ nhật suy ra AC=HK
C) có T/g AMH= BMH ( c,g.c)
suy ra BH=HA suy ra H là trung điểm BA , suy ra CH là đường trung tuyến
có đường trung tuyến CH cắt đường trung tuyến AM và cắt BI tai G ( gt)
suy ra BI là đường trung tuyến suy ra I là trung điểm ac

A=8/1.5 + 8/5.9 + 8/9.13+ ... +8/25.29
A=2 . (2/1.5 +4/5.9 + 4/9.13 + ...... +4/25.29
A=2.(1-1/5+1/5-1/9+1/9-1/13+...+1/25-1/29
A=2.(1-1/29)
A=2. 28/29
A=56/29

bạn tự vẽ hình nha
áp dụng địng lí py ta go vào tam giác ABC vuông ở A
=> \(BC^2=AB^2+AC^2\)
=\(6^2+8^2\)
=36+64
=100
=> BC=10cm
a) ta có định lí: trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền thì = nửa cạnh huyền
=> AM=\(\frac{BC}{2}\)=\(\frac{10}{2}\)=5 cm
b)xét 2 tam giác AMB và DMC có:
AM =MD(gt)
BM=CM(AM là trung tuyến)
góc AMB=góc DMC(đối đỉnh)
=> 2 tam giác AMB=DMC(c.g.c)
c)
cì AM =\(\frac{BC}{2}=BM=CM\)
mà AM =DM(gt)
=> AM+DM=BM+CM hay AD=BC
2 tam giác ABM=DMC(theo b)
=> AB=DC(2 cạnh tương ứng)
xét 2 tam giác ABC và CDA có:
AB =DC(chứng minh trên )
AD =BC(chứng minh trên)
cạnh AC chung
=> 2 tam giác ABC =CDA(c.c.c)
=> 2góc BAC=DCA=90độ(2 góc tương ứng)
hay AC vuông góc với DC

Có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2-y^2+2z^2}{4-9+2\cdot16}=\frac{108}{27}=4\)
\(\Rightarrow\begin{cases}x=4;x=-4\\y=6;y=-6\\z=8;z=-8\end{cases}\)
Vậy pt có nghiệm là \(\left[\begin{array}{nghiempt}x=4;y=6;z=8\\x=-4;y=-6;z=-8\end{array}\right.\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3\cdot bk\cdot b}{11b^2k^2-8b^2}=\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(1\right)\)
\(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3dk\cdot d}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrowđpcm\)
Mấy bài khác tương tự

\(a,\left|3x-1\right|=\left|5-2x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)
b,\(\left|2x-1\right|+x=2\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)
c.\(A=0,75-\left|x-3,2\right|\)
Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)
Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)
Vậy Max A = 0,75 khi x = 3,2
\(d,B=2.\left|x+1,5\right|-3,2\)
Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2
Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)
\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)
Vậy Min B = -3,2 khi x = -1,5
