Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2-9)^2=12x-1
<=>x^4-18x^2-12x+80=0
<=>x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80...
<=>(x-2)(x^3+2x^2-14x-40)=0
<=>(x-2)(x-4)(x^2+6x+10)=0
Ta thấy x^2+6x+10=(x+3)^2+1>0
=>x=2 hhoặc x=4
\(\left(x^2-9\right)^2=12x+1\)
\(\Leftrightarrow x^4-18x^2+81=12x+1\)
\(\Leftrightarrow x^4-18x^2+81-12x-1=0\)
\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
(x^2-9)^2=12x-1
<=>x^4-18x^2-12x+80=0
<=>x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80...
<=>(x-2)(x^3+2x^2-14x-40)=0
<=>(x-2)(x-4)(x^2+6x+10)=0
Ta thấy x^2+6x+10=(x+3)^2+1>0
=>x=2 hhoặc x=4
a: =>x^3+2x^2-8x^2-16x+15x+30=0
=>(x+2)(x^2-8x+15)=0
=>(x+2)(x-3)(x-5)=0
=>\(x\in\left\{-2;3;5\right\}\)
b: =x^2-12x+36-3
=(x-6)^2-3>=-3
Dấu = xảy ra khi x=6
=4x^2-4x+1+x^3-27-4(x^2-16)
=4x^2-4x+1+x^3-27-4x^2+64
=x^3-4x+38
a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)
=> x=-1
với \(3x^2+x-2=0\)
ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)
Vậy ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
hay \(x\in\left\{1;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)
\(\Leftrightarrow\)4x-18-12x-1=0
\(\Leftrightarrow\)-8x=19
\(\Leftrightarrow\)x=\(\dfrac{-19}{8}\)