Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-9\right)^2=12x+1\)
\(\Leftrightarrow x^4-18x^2+81=12x+1\)
\(\Leftrightarrow x^4-18x^2+81-12x-1=0\)
\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
5.
P = ( x - 1 )( x + 2 )( x + 3 )( x + 6 ) < sửa rồi nhé :v >
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= ( x2 + 5x - 6 )( x2 + 5x + 6 ) (1)
Đặt t = x2 + 5x
(1) = ( t - 6 )( t + 6 )
= t2 - 36 ≥ -36 ∀ t
Dấu "=" xảy ra khi t = 0
=> x2 + 5x = 0
=> x( x + 5 ) = 0
=> x = 0 hoặc x = -5
=> MinP = -36 <=> x = 0 hoặc x = -5
6.
a) ( x2 + x )2 + 4( x2 + x ) = 12
Đặt t = x2 + x
pt <=> t2 + 4t = 12
<=> t2 + 4t - 12 = 0
<=> t2 - 2t + 6t - 12 = 0
<=> t( t - 2 ) + 6( t - 2 ) = 0
<=> ( t - 2 )( t + 6 ) = 0
<=> ( x2 + x - 2 )( x2 + x + 6 ) = 0
<=> x2 + x - 2 = 0 hoặc x2 + x + 6 = 0
+) x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
+) x2 + x + 6 = ( x2 + x + 1/4 ) + 23/4 = ( x + 1/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> x ∈ { -2 ; 1 }
b) x2 - 12x + 36 = 81
<=> ( x - 6 )2 = ( ±9 )2
<=> x - 6 = 9 hoặc x - 6 = -9
<=> x = 15 hoặc x = -3
a) \(x^4+2x^3-12x^2-13x+42=0\)
\(\Leftrightarrow x^4+3x^3-x^3-3x^2-9x^2-27x+14x+42=0\)
\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)-9x\left(x+3\right)+14\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-9x+14\right)=0\)
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x^2+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
Ta có:
\(x^2+x+6=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...........
\(x^2-2x=24\)
<=> \(x^2-2x-24=0\)
<=> \( \left(x+4\right)\left(x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
Vậy....
\(a,\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)
\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)
\(\Leftrightarrow4\left(2+x\right)=0\)
\(\Leftrightarrow2+x=0\)
\(\Leftrightarrow x=-2\)
\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)
\(\Leftrightarrow2x+255=0\)
\(\Leftrightarrow x=-127,5\)
toàn hằng đẳng thức (1) và (2) thôi mà bạn, đọc SGK 8 tập 1 là hiểu ngay. Có gì khó hiểu hỏi nhé!
a, x2-6x +9 = (x-3)2
b, 4x2+4x +1 = (2x)2+2.2x.1 +12=(2x+1)2
c, 9x2 -12x +4 = (3x-2)2
d, 25x2 -10x +1= (5x -1)2
e, x4-4x2+4 = (x2 -2)2
f, x2 +8x +16 = (x+4)2
Đây là giải bất phương trình nhé bạn
a) Ta có: \(3\left(1-2x\right)< 4\left(5-\frac{3x}{2}\right)\)
\(\Leftrightarrow3-6x< 20-6x\)
\(\Leftrightarrow3-6x-20+6x< 0\)
hay -17<0(vô lý)
Vậy: \(S=\varnothing\)
b) Ta có: \(4-\left(x-3\right)^2-\left(2x-1\right)^2>12x\)
\(\Leftrightarrow4-\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x>0\)
\(\Leftrightarrow4-x^2+6x-9-4x^2+4x-1-12x>0\)
\(\Leftrightarrow-5x^2-2x-6>0\)
\(\Leftrightarrow-5\left(x^2+\frac{2}{5}x+\frac{6}{5}\right)>0\)
\(\Leftrightarrow x^2+\frac{2}{5}x+\frac{6}{5}< 0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{2}{10}+\frac{4}{100}+\frac{29}{25}< 0\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2+\frac{29}{25}< 0\)(vô lý)
Vậy: \(S=\varnothing\)
a) 3x^3-12x=0
3x(x^2-4)=0
3x(x-2)(x+2)=0
suy ra 3x=0 suy ra x=0
x-2=0 x=2
x+2=0 x= -2
b) (x-3)^2-(x-3)(3-x)^2=0
(x-3)^2-(x-3)(x-3)^2=0
(x-3)^2(1-x+3)=0
(x-3)^2(4-x)=0
suy ra x-3=0 suy ra x=3
4-x=0 x=4
a) và b) đã nhé bạn
(x^2-9)^2=12x-1
<=>x^4-18x^2-12x+80=0
<=>x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80...
<=>(x-2)(x^3+2x^2-14x-40)=0
<=>(x-2)(x-4)(x^2+6x+10)=0
Ta thấy x^2+6x+10=(x+3)^2+1>0
=>x=2 hhoặc x=4
(x^2-9)^2=12x-1
<=>x^4-18x^2-12x+80=0
<=>x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80...
<=>(x-2)(x^3+2x^2-14x-40)=0
<=>(x-2)(x-4)(x^2+6x+10)=0
Ta thấy x^2+6x+10=(x+3)^2+1>0
=>x=2 hhoặc x=4