K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

\(\left(x^2-9\right)^2=12x+1\)

\(\Leftrightarrow x^4-18x^2+81=12x+1\)

\(\Leftrightarrow x^4-18x^2+81-12x-1=0\)

\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

24 tháng 4 2016

(x^2-9)^2=12x-1 

<=>x^4-18x^2-12x+80=0 

<=>x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80... 

<=>(x-2)(x^3+2x^2-14x-40)=0 

<=>(x-2)(x-4)(x^2+6x+10)=0 

Ta thấy x^2+6x+10=(x+3)^2+1>0 

=>x=2 hhoặc x=4

24 tháng 4 2016

(x^2-9)^2=12x-1 

<=>x^4-18x^2-12x+80=0 

<=>x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80... 

<=>(x-2)(x^3+2x^2-14x-40)=0 

<=>(x-2)(x-4)(x^2+6x+10)=0 

Ta thấy x^2+6x+10=(x+3)^2+1>0 

=>x=2 hhoặc x=4

6 tháng 10 2020

5.

P = ( x - 1 )( x + 2 )( x + 3 )( x + 6 ) < sửa rồi nhé :v >

= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

= ( x2 + 5x - 6 )( x2 + 5x + 6 ) (1)

Đặt t = x2 + 5x 

(1) = ( t - 6 )( t + 6 )

     = t2 - 36 ≥ -36 ∀ t

Dấu "=" xảy ra khi t = 0

=> x2 + 5x = 0

=> x( x + 5 ) = 0

=> x = 0 hoặc x = -5

=> MinP = -36 <=> x = 0 hoặc x = -5

6 tháng 10 2020

6.

a) ( x2 + x )2 + 4( x2 + x ) = 12

Đặt t = x2 + x

pt <=> t2 + 4t = 12

     <=> t2 + 4t - 12 = 0

     <=> t2 - 2t + 6t - 12 = 0

     <=> t( t - 2 ) + 6( t - 2 ) = 0

     <=> ( t - 2 )( t + 6 ) = 0

     <=> ( x2 + x - 2 )( x2 + x + 6 ) = 0

     <=> x2 + x - 2 = 0 hoặc x2 + x + 6 = 0

+) x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

+) x2 + x + 6 = ( x2 + x + 1/4 ) + 23/4 = ( x + 1/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x

=> x ∈ { -2 ; 1 }

b) x2 - 12x + 36 = 81

<=> ( x - 6 )2 = ( ±9 )2

<=> x - 6 = 9 hoặc x - 6 = -9

<=> x = 15 hoặc x = -3

a) \(x^4+2x^3-12x^2-13x+42=0\)

\(\Leftrightarrow x^4+3x^3-x^3-3x^2-9x^2-27x+14x+42=0\)

\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)-9x\left(x+3\right)+14\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-9x+14\right)=0\)

8 tháng 4 2018

\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x^2+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

Ta có:

\(x^2+x+6=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy...........

Đây là giải bất phương trình nhé bạn

a) Ta có: \(3\left(1-2x\right)< 4\left(5-\frac{3x}{2}\right)\)

\(\Leftrightarrow3-6x< 20-6x\)

\(\Leftrightarrow3-6x-20+6x< 0\)

hay -17<0(vô lý)

Vậy: \(S=\varnothing\)

b) Ta có: \(4-\left(x-3\right)^2-\left(2x-1\right)^2>12x\)

\(\Leftrightarrow4-\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x>0\)

\(\Leftrightarrow4-x^2+6x-9-4x^2+4x-1-12x>0\)

\(\Leftrightarrow-5x^2-2x-6>0\)

\(\Leftrightarrow-5\left(x^2+\frac{2}{5}x+\frac{6}{5}\right)>0\)

\(\Leftrightarrow x^2+\frac{2}{5}x+\frac{6}{5}< 0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{2}{10}+\frac{4}{100}+\frac{29}{25}< 0\)

\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2+\frac{29}{25}< 0\)(vô lý)

Vậy: \(S=\varnothing\)

28 tháng 1 2017

trên gg có

25 tháng 2 2018

bạn có thể gửi cho mih link trang đó đc k

mk giải từng nha == tại vì mk sợ nhiều qus bị troll 

\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(27x^3+18x^2+12x-18x^2-12x-8-3x\left(9x^2-3x+1\right)+\left(9x^2-3x+1\right)=x-4\)

\(27x^3-8-3\left(9x^2-3x+1\right)+9x^2-3x+1=x-4\)

\(27x^3-7-3x\left(9x^2-3x+1\right)+9x^2-3x=x-4\)

\(27x^3-7-27x^3+9x^2-3x+9x^2-3x=x-4\)

\(-7+18x^2-6x=x-4\)

\(3-18x^2+7x=0\)

\(x=\frac{-7+\sqrt{265}}{-36};\frac{-7-\sqrt{265}}{-36}\)

\(9\left(2x+1\right)=4\left(x-5\right)^2\)

\(18x+9=4x^2-40x+100\)

\(18x+9-4x^2+40x-100=0\)

\(58x-91-4x^2=0\)

\(x=\frac{29-3\sqrt{53}}{4};\frac{29+3\sqrt{53}}{4}\)

Câu hỏi của Trịnh Minh Châu - Toán lớp 8 - Học toán với OnlineMath

12 tháng 1 2018

\(\left(x^2-9\right)^2=12x+1\)

\(\Leftrightarrow x^4-18x^2+81-12x-1=0\)

\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2+6x^2-24x+10x-40\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)+6x\left(x-4\right)+10\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\) (*)

\(x^2+6x+10=x^2+6x+9+1=\left(x+3\right)^2+1>0\)

(*) \(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = {2;4}.

12 tháng 1 2018

\(\left(x^2-9\right)^2=12x+1\\ \Leftrightarrow\left(x^29\right)^2-1=12x\\ \Leftrightarrow\left(x^2-10\right)\left(x^2-8\right)-12x=0\\ \Leftrightarrow x^4-18x^2-12x+80=0\\ \Leftrightarrow x^4-4x^3+4x^3-16x^2-2x^2+8x-20x+80=0\\ \Leftrightarrow\left(x^3+4x^2-2x-20\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3-2x^2+6x^2-12x+10x-20\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^2+6x+10\right)\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(\left(x+3\right)^2+1\right)\left(x-2\right)\left(x-4\right)=0\)

từ đó suy ra x=2 hoac x=4