K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 8 2021

\(\Leftrightarrow2^{-3}.2^{2x}-3.2^{-2}.2^x+1=0\)

\(\Leftrightarrow\dfrac{1}{8}2^{2x}-\dfrac{3}{4}2^x+1=0\)

Đặt \(2^x=t>0\)

\(\Rightarrow\dfrac{1}{8}t^2-\dfrac{3}{4}t+1=0\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

NV
21 tháng 11 2019

\(\Rightarrow4^x-3.2^{x+1}+2=\sqrt{2}^{2\left(x+2\right)}\)

\(\Leftrightarrow4^x-6.2^x+2=2^{x+2}=4.2^x\)

Đặt \(2^x=a>0\Rightarrow a^2-6a+2=4a\)

\(\Leftrightarrow a^2-10a+2=0\Rightarrow\left[{}\begin{matrix}a=5+\sqrt{23}\\a=5-\sqrt{23}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2^x=5+\sqrt{23}\\2^x=5-\sqrt{23}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=log_2\left(5+\sqrt{23}\right)\\x=log_2\left(5-\sqrt{23}\right)\end{matrix}\right.\)

2 tháng 4 2017

a) Đặt t = 13x > 0 ta được phương trình:

13t2 – t – 12 = 0 ⇔ (t – 1)(13t + 12) = 0

⇔ t = 1 ⇔ 13x = 1 ⇔ x = 0

b)

Chia cả hai vế phương trình cho 9x ta được phương trình tương đương

(1+(23)x)(1+3.(23)x)=8.(23)x(1+(23)x)(1+3.(23)x)=8.(23)x

Đặt t=(23)xt=(23)x (t > 0) , ta được phương trình:

(1 + t)(1 + 3t) = 8t ⇔ 3t2 – 4t + 1 = 0 ⇔ t∈{13,1}t∈{13,1}

Với t=13t=13 ta được nghiệm x=log2313x=log2313

Với t = 1 ta được nghiệm x = 0

c) Điều kiện: x > 2

Vì nên phương trình đã cho tương đương với:

[log3(x−2)=0log5x=1⇔[x=3x=5[log3(x−2)=0log5x=1⇔[x=3x=5

d) Điều kiện: x > 0

log22x – 5log2x + 6 = 0

⇔(log2x – 2)(log2x – 3) = 0

⇔ x ∈ {4, 8}



NV
17 tháng 7 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{2}+k2\pi\\x\ne\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\\end{matrix}\right.\)

\(\dfrac{cosx-2sinx.cosx}{2cos^2x-1-sinx}=\sqrt{3}\)

\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x-sinx}=\sqrt{3}\)

\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x-\sqrt{3}sinx\)

\(\Leftrightarrow cosx+\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\left(loại\right)\end{matrix}\right.\)

Vậy \(x=-\dfrac{\pi}{6}+k2\pi\)

11 tháng 3 2018

a) Bất phương trình đã cho tương đương với hệ sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )

b) Tương tự câu a), tập nghiệm là (1/10; 5)

c) Đặt t = log 2 x , ta có bất phương trình 2 t 3  + 5 t 2  + t – 2 ≥ 0 hay (t + 2)(2 t 2  + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2

Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2

Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )

d) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )

NV
22 tháng 7 2020

ĐKXĐ: ...

\(\Leftrightarrow\left(2x\right)^3+2x=\left(x+1\right)\sqrt{x+1}+\sqrt{x+1}\)

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt{x+1}=b\end{matrix}\right.\)

\(\Rightarrow a^3+a=b^3+b\)

\(\Rightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)

\(\Rightarrow2x=\sqrt{x+1}\) (\(x\ge0\))

\(\Leftrightarrow4x^2=x+1\Rightarrow4x^2-x-1=0\Rightarrow x=\frac{1+\sqrt{17}}{8}\)

22 tháng 7 2020

pt<=>(2x)^3+2x=(x+1)căn(x+1)+căn(x+1) (*)

Xét hs f(x)=x^3+x, x>=-1

f'(x)=3x^2+x>0, với mọi x>=-1==> Hs đb trên [-1;+vô cùng] 

(*)==> 2x=căn(x+1)

22 tháng 7 2020

Gạch đầu dòng thứ nhất k hiểu ạ