Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2-5x+1=0\)
\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)
___________________________________________________
b) \(4x^2+4x+1=0\)
\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)
Vậy phương trình có nghiệm kép:
___________________________________________________
c) \(5x^2-x+2=0\)
\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)
Vậy phương trình vô nghiệm.
a, \(x^4-4x^3-6x^2-4x+1=0\)(*)
<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)
<=> \(\left(x^2-2x+1\right)^2=12x^2\)
<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)
Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)
<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)
=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)
<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)
<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm
Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
\(\Delta=\left(m+2\right)^2+8m=m^2+12m+4>0\) \(\Rightarrow\left[{}\begin{matrix}m< -6-4\sqrt{2}\\m>-6+4\sqrt{2}\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài ta có hệ:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{4\left(m+2\right)}{3}\\x_2=-\frac{m+2}{3}\end{matrix}\right.\)
Mặt khác \(x_1x_2=-2m\Rightarrow\frac{2\left(m+2\right)^2}{9}=m\)
\(\Leftrightarrow2m^2-m+8=0\) (vô nghiệm)
Không tồn tại m thỏa mãn
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)
\(B=\dfrac{4x_1-1}{x_2}+\dfrac{4x_2-1}{x_1}=\dfrac{4x_1^2-x_1+4x_2^2-x_2}{x_1x_2}\)
\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2-\left(x_1+x_2\right)}{x_1x_2}=\dfrac{4.\left(-\dfrac{3}{2}\right)^2-8.\left(-\dfrac{1}{2}\right)-\left(-\dfrac{3}{2}\right)}{-\dfrac{1}{2}}=-29\)
Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)^2]-6m+4 >= 0`
`<=>m^2+2m+1-6m+4 >= 0`
`<=>m^2-4m+5 >= 0<=>(m-2)^2+1 >= 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=6m-4):}`
Có:`(2m-2)x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2-4)x_1+x_2 ^2-4x_2=4`
`<=>x_1 ^2+x_1 x_2 -4x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2)^2-x_1x_2-4(x_1+x_2)=4`
`<=>(2m+2)^2-(6m-4)-4(2m+2)=4`
`<=>4m^2+8m+4-6m+4-8m-8=4`
`<=>4m^2-6m-4=0`
`<=>(2m-3/2)^2-25/4=0`
`<=>|2m-3/2|=5/2`
`<=>[(m=2),(m=-1/2):}`
\(\Delta=\left(2m-3\right)^2>0\Rightarrow m\ne\frac{3}{2}\)
Áp dụng hệ thức Vi-ét,ta có :
\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x_1+4x_2=2\left(1-2m\right)\\3x_1-4x_2=11\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7x_1=13-4m\\x_1+x_2=\frac{1-2m}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_2=\frac{1-2m}{2}-x_1=\frac{1-2m}{2}-\frac{13-4m}{7}=\frac{-6m-19}{14}\end{cases}}\)
Mà \(x_1x_2=\frac{m-1}{2}\Rightarrow\frac{13-4m}{7}.\frac{-6m-19}{14}=\frac{m-1}{2}\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{33}{8}\\m=-2\end{cases}\left(tm\right)}\)
Vậy ...
Sửa đề:
6x⁴ - 4x² - 2 = 0
⇔ 3x⁴ - 2x² - 1 = 0 (1)
Đặt t = x² (t ≥ 0)
(1) ⇔ 3t² - 2t - 1 = 0
Ta có:
a + b + c = 3 + (-2) + (-1) = 0
Phương trình có hai nghiệm:
t₁ = 1 (nhận); t₂ = -1/3 (loại)
Với t₁ = 1
⇒ x² = 1
⇔ x = -1 hoặc x = 1
Vậy S = {-1; 1}
6n4 - 4 \(\times\) 2 - 2 = 0
6n4 - 8 - 2 = 0
6n4 - 10 = 0
6n4 = 10
n4 = 10 : 6
n4 = \(\dfrac{5}{3}\)
n = \(\pm\) \(\sqrt[4]{\dfrac{5}{3}}\)
Vậy n = \(\pm\) \(\sqrt[4]{\dfrac{5}{3}}\)