Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2 + 4x = 8y3 - 2z2 +4
=> 4x(x+1) = 8y3 -2(z2-2)
Nhân xét : vế trái chia hết cho 8( vì x(x+1) chia hết cho 2) ; vế phải có 8y3 chia hết cho 8 => 2(z2-2) chia hết cho 8
=> (z2-2) chia hết cho 4 (1) => z chẵn => z2 chia hết cho 4 => (z2-2) không chia hết cho 4 (2)
(1) và (2) => pt đã cho không có nghiệm nguyên
<=> 2.(x2 + 2x +1) + 3.y2 = 21
<=> 2.(x+1)2 + 3. y2 = 21
Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 \(\le\) 21 và (x+1)2 là số chính phương
=> (x+1)2 =0 hoặc 9
+) x + 1 = 0 => x = -1 => y 2 = 7 => loại
+) (x+1)2 = 9 => y2 = 1
=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4
y2 = 1 => y = 1 hoặc y = -1
Vậy....
\(\Leftrightarrow4x^2+8x+4=42-6y^2\)
\(\Rightarrow\left(2x+2\right)^2=6\left(7-y^2\right)\)
Vì \(\left(2x+2\right)^2\ge0\) \(\Rightarrow7-y^2\ge0\)\(\Rightarrow y^2\le7\)
Mà \(y\in Z\) \(\Rightarrow y=0\); +-1 ; +-2 \(\Rightarrow\) các gt tương ứng của x
đúng nha
bài này cũng dễ
b: \(\text{Δ}=\left(-4\right)^2-4\cdot3\cdot\left(m+1\right)\)
\(=16-12m-12=-12m+4\)
Để pt có hai nghiệm thì -12m+4>=0
=>m<=1/3
Ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{10}{9}\)
=>\(\left(\dfrac{4}{3}\right)^2-2\cdot\left(m+1\right)=\dfrac{10}{9}\)
=>2(m+1)=16/9-10/9=6/9
=>m+1=3/9
=>m=-2/3
a: Để phương trình có hai nghiệm trái dấu thì m+1<0
hay m<-1
a)\(ĐKXĐ:x\ge\frac{-1}{2}\)
\(\sqrt{x^2+4x+4}=2x+1\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)
\(\Leftrightarrow x+2=2x+1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là 1.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
\(\Leftrightarrow2x-3=x-3\)
\(\Leftrightarrow2x=x\)
\(\Leftrightarrow x=0\)(không t/m đkxđ)
Vậy phương trình vô nghiệm
\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)
Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)
Với \(m\le3\), theo hệ thức Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)
Vì \(x_1^3+x_2^3< 100\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)
\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)
\(\Leftrightarrow14-2m-m-1< 25\)
\(\Leftrightarrow13-3m< 25\)
\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)
Vậy \(-4< m\le3\)
nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3
272hay 27y2
272