\(x^3-7x^2+15x-25=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2016

\(x^3-5x^2-2x^2+10x+5x-25=0\)

<=>\(x^2.\left(x-5\right)-2x\left(x-5\right)+5.\left(x-5\right)=\left(x-5\right)\left(x^2-2x+5\right)=0\)

<=>hoặc x-5=0 =>x=5

hoặc x^2-2x+5=0 (tự biến đổi ra ) <=>(x-1)^2=-4(loại)

Vậy nghiệm của pt là x=5

19 tháng 1 2016

<=>\(x^3-7x^2+15x-25=\left(x-5\right)\left(x^2-2x+5\right)\)

=>\(x^2-2x+5=0\)

có biệt thức

\(\left(-2\right)^2-4\left(1.5\right)=-16\)

=>PT trên ko có nghiệm

=>x=5

 

15 tháng 2 2016

ĐK: x khác -1 và x khác 1.

\(PT\Leftrightarrow\frac{7x.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x.\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+21}{\left(x-1\right)\left(x+1\right)}=0\)

<=> 7x2 + 7x - 5x2 + 5x + x + 21 = 0

<=> 2x+ 13x + 21 = 0

<=> 2x2 + 6x + 7x + 21 = 0

<=> 2x.(x + 3) + 7.(x + 3) = 0

<=> (x + 3).(2x + 7) = 0

<=> x + 3 = 0 hoặc 2x + 7 = 0

<=> x = -3 hoặc x = -7/2

Vậy S = {-7/2; -3}.

30 tháng 1 2019

\(x^4+3x^2+x^3+2x+2=0\)

\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)

Do 2 thừa số ở VT đều > 0

\(\Rightarrow\) PTVN

30 tháng 1 2019

\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

\(\left(\frac{1}{x-1}+\frac{1}{x-4}\right)-\left(\frac{1}{x-2}+\frac{1}{x-3}\right)=0\)

\(\Leftrightarrow\frac{x-4+x-1}{\left(x-1\right).\left(x-4\right)}-\frac{x-3-x-2}{\left(x-2\right).\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{2x-5}{x^2-5x+4}-\frac{2x-5}{x^2-5x+6}=0\)

\(\Leftrightarrow\left(2x-5\right).\left(\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x^2-5x+4=x^2-5x+6\left(loai\right)\end{cases}}}\)

Vậy..

21 tháng 7 2019

\(\frac{3}{4}\left(x^2+1\right)^2+3\left(x^2+x\right)-9=0\)

<=> \(3\left(x^2+1\right)^2.4+3\left(x^2+x\right).4-9.4=0.4\)

<=> \(3\left(x^2+1\right)^2+12\left(x^2+x\right)-36=0\)

<=> \(3x^4+18x^2+12x-33=0\)

<=> \(3\left(x-1\right)\left(x^3+x^2+7x+11\right)=0\)

<=> \(x-1=0\)

<=> \(x=1\)

Mà vì: \(x^3+x^2+7x+11\ne0\)

=> x = 1

21 tháng 7 2019

\(=>\frac{3}{4}\left[\left(x^2+1\right)^2+4\left(x^2+1\right)+4\right]-12=0\)

\(=>\frac{3}{4}\left(x^2+1+2\right)^2-12=0\)

\(=>\left(x^2+3\right)^2=16\)

Đến đây tự tìm nha 

 Hok tốt 

11 tháng 5 2018

5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6

\(\Leftrightarrow\) 5x-2x>6+2

\(\Leftrightarrow\)3x>8

\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)

0 8/3

Chúc bn học tốt❤

NV
29 tháng 2 2020

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}+2\left(x+\frac{1}{x}\right)+4=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(\Rightarrow t^2+2t+2=0\Leftrightarrow\left(t+1\right)^2+1=0\)

Phương trình vô nghiệm

3 tháng 3 2020

cảm ơn bạn

9 tháng 5 2017

-2x2 - x - 2 > 0

=> -2x2 - x - 2 = 0

=> x không € R

-2x2 - x - 2 > 0, a = -2

=> x € tập hợp rỗng