Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x ( x2 + 2 ) > x3 - x + 6 (1)
<=> x3 + 2x > x3 - x + 6
<=> 3x > 6
<=> x > 2
Vậy tập nghiệm của phương trình (1) là S = { x | x > 2 }
a)MTC 15
\(\dfrac{\left(x-3\right)\times3}{15}=\dfrac{6.15-\left(1-2x\right)\times5}{15}=\dfrac{3x-9}{15}=\dfrac{90-5-10x}{15}=3x-9=90-5-10x\Leftrightarrow3x+10x=90-5+9\)
Chưa nghỉ tết à :))
\(a,\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)
\(\Rightarrow3\left(x-3\right)=6.15-5\left(1-2x\right)\)
\(\Leftrightarrow3x-9=90-5+10x\)
\(\Leftrightarrow3x-10x=90-5+9\)
\(\Leftrightarrow-7x=94\)
\(\Leftrightarrow x=-\dfrac{94}{7}\)
Vậy.....
\(b,\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(\Rightarrow2\left(3x-2\right)-5.12=3\left[3-2\left(x+7\right)\right]\)
\(\Leftrightarrow6x-4-60=-6x-33\)
\(\Leftrightarrow6x+6x=-33+60+4\)
\(\Leftrightarrow12x=31\)
\(\Leftrightarrow x=\dfrac{31}{12}\)
Vậy.....
\(c,2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)
\(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)
\(\Leftrightarrow2x+x=5-\dfrac{13}{5}-\dfrac{6}{5}\)
\(\Leftrightarrow3x=\dfrac{6}{5}\)
\(\Leftrightarrow x=\dfrac{2}{5}\)
Vậy.....
\(d,\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)
\(\Rightarrow28\left[5\left(x-1\right)+2\right]-42\left(7x-1\right)=24\left[2\left(2x+1\right)\right]-5.168\)
\(\Leftrightarrow140x-84-294x+42=96x+48-840\)
\(\Leftrightarrow140x-294x-96x=48-840-42+84\)
\(\Leftrightarrow-250x=-750\)
\(\Leftrightarrow x=3\)
Vậy.....
\(e,\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Rightarrow6\left(x-1\right)+3\left(x-1\right)=12-4\left[2\left(x-1\right)\right]\)
\(\Leftrightarrow6x-6+3x-3=12-8x+8\)
\(\Leftrightarrow6x+3x+8x=12+8+3+6\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy.....
\(g,\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow\dfrac{2}{2001}-\dfrac{x}{2001}-1=\dfrac{1}{2002}-\dfrac{x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow-\dfrac{x}{2001}+\dfrac{x}{2002}+\dfrac{x}{2003}=\dfrac{1}{2002}+1-\dfrac{2}{2001}\)
\(\Leftrightarrow x\left(-\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\right)=1+\dfrac{1}{2002}-\dfrac{2}{2001}\)
\(\Leftrightarrow x=\dfrac{\left(1+\dfrac{1}{2002}-\dfrac{2}{2001}\right)}{\left(-\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\right)}=2003\)
Vậy.....
\(\dfrac{1}{3-5x}>\dfrac{1}{2x+3}\)
⇔ \(\dfrac{1}{3-5x}-\dfrac{1}{2x+3}>0\)
⇔ \(\dfrac{2x+3+5x-3}{\left(3-5x\right)\left(2x+3\right)}>0\)
⇔\(\dfrac{7x}{\left(3-5x\right)\left(2x+3\right)}>0\)
Lập bảng xét dấu , ta có :
x 7x 3-5x 2x+3 Thương -3/2 0 3/5 0 0 0 - - + + + + + - - + + + + - 0 + - Vậy , nghiệm của BPT là : x < \(\dfrac{-3}{2}\) hoặc : 0 < x < \(\dfrac{3}{5}\)
\(\dfrac{1}{3-5x}>\dfrac{1}{2x+3}\)
DKXD : \(x\ne\dfrac{3}{5};x\ne\dfrac{-3}{2}\)
\(\Leftrightarrow\dfrac{1}{3-5x}-\dfrac{1}{2x+3}>0\)
\(\Leftrightarrow\dfrac{2x+3}{\left(3-5x\right)\left(2x+3\right)}-\dfrac{3-5x}{\left(3-5x\right)\left(2x+3\right)}>0\)
\(\Leftrightarrow\dfrac{2x+3-3+5x}{\left(3-5x\right)\left(2x+3\right)}>0\)
\(\Leftrightarrow\dfrac{7x}{\left(3-5x\right)\left(2x+3\right)}>0\)
\(\Leftrightarrow7x>0\)
\(\Leftrightarrow x>0\)
Vậy bpt có nghiệm khi \(x>0\) tm \(x\ne\dfrac{3}{5};x\ne\dfrac{-3}{2}\)
ĐK: a \(\ne\) 0
BPT tương đương
x +\(\frac{x}{a}\)- \(\frac{1}{a}\)- \(\frac{x}{a}\)- \(\frac{1}{a}\)+ (a - 2)x < 0
<=> x - \(\frac{2}{a}\)+ (a - 2) x < 0
<=> (a - 1)x < \(\frac{2}{a}\)
TH1: a = 1: BPT luôn đúng với mọi x
TH2: a > 1: BPT tương đương:
x < \(\frac{2}{a\left(a-1\right)}\)
TH3: a < 1 (a\(\ne\)0) BPT tương đương:
x > \(\frac{2}{a\left(a-1\right)}\)
5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6
\(\Leftrightarrow\) 5x-2x>6+2
\(\Leftrightarrow\)3x>8
\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)
0 8/3
Chúc bn học tốt❤