Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{2}x-\sqrt{50}=0\Leftrightarrow\sqrt{2}x-5\sqrt{2}=0\Leftrightarrow\sqrt{2}\left(x-5\right)=0\Leftrightarrow x=5\)
b, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}\left(x+1\right)=5\sqrt{3}\Leftrightarrow x+1=5\Leftrightarrow x=4\)
c, \(\sqrt{3}x^2-\sqrt{12}=0\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
d, \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{1}{\sqrt{5}}\left(x^2-10\right)=0\Leftrightarrow x^2-10=0\Leftrightarrow x=\pm\sqrt{10}\)
a) \(\sqrt{2}x-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}x=\sqrt{50}\)
\(\Leftrightarrow x=\frac{\sqrt{50}}{\sqrt{2}}=\sqrt{\frac{50}{2}}=\sqrt{25}=5\)
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\sqrt{3}\left(x+1\right)=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}x=5\sqrt{3}\)
\(\Leftrightarrow x=5\)
c) \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{2}\\x=-\sqrt{2}\end{array}\right.\)
d) \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
\(\Leftrightarrow\)\(\frac{1}{\sqrt{5}}\left(x^2-10\right)=0\)
\(\Leftrightarrow x^2-10=0\)
\(\Leftrightarrow x^2=10\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{10}\\x=-\sqrt{10}\end{array}\right.\)
ĐK : tự ghi nha
\(\sqrt{1-x}+2\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{1-x}-1=-2\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{1-x}-1\right)^2=\left(-2\sqrt{x}\right)^2\)
\(\Leftrightarrow1-x-2\sqrt{1-x}+1=4x\)
\(\Leftrightarrow2-2\sqrt{x-1}=5x\)
\(\Leftrightarrow2\left(1-\sqrt{x-1}\right)=5x\)
\(\Leftrightarrow\sqrt{1-x}=1-\frac{5x}{2}\)
\(\Leftrightarrow\left|1-x\right|=\left(1-\frac{5x}{2}\right)^2\)
\(\Leftrightarrow\left|1-x\right|=1-5x+\frac{25x^2}{4}\)\(\Leftrightarrow\orbr{\begin{cases}1-x=1-5x+\frac{25x^2}{4}\\1-x=5x-1-\frac{25x^2}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\varnothing\end{cases}}\)
\(\Leftrightarrow x=0\left(tmđk\right)\)
Giải câu d thôi mấy câu còn lại đơn giản lắm nên bạn tự làm.
d/ \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Điều kiện \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=1\)
\(\Leftrightarrow|2-\sqrt{x-1}|+|3-\sqrt{x-1}|=1\)
Đây chỉ là phương trình cơ bản của trị tuyệt đối lớp 6, 7 học rồi nên bạn tự làm nhé.
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
a) \(x^2+x+\sqrt{3}x+\sqrt{3}=0\) <=> \(x\left(x+1\right)+\sqrt{3}\left(x+1\right)=0\) <=> \(\left(x+\sqrt{3}\right)\left(x+1\right)=0\) <=> x=\(-\sqrt{3}\) ; x=-1
b) tương tự câu a
\(\sqrt{2}.x-\sqrt{50}=0\)
\(\Rightarrow\sqrt{2}\left(x-\sqrt{25}\right)=0\)
\(\Rightarrow x-5=0\)
=> x=5
\(\sqrt{2x}-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow x=\frac{\sqrt{50}}{\sqrt{2}}\)
\(\Leftrightarrow x=\sqrt{\frac{50}{2}}\)
\(\Leftrightarrow x=\sqrt{25}\)
\(\Leftrightarrow x=5\)