K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)

b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=> 3 = 0 (vô lý)

=> pt vô nghiệm.

 

19 tháng 8 2016

c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)

\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)

d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))

\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)

Vậy pt vô nghiệm.

9 tháng 10 2019

a.

\(DK:49-28x-4x^2\ge0\)

PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)

\(\Leftrightarrow49-28x-4x^2=25\)

\(\Leftrightarrow4x^2+28x-24=0\)

\(\Leftrightarrow x^2+7x-6=0\)

Ta co:

\(\Delta=7^2-4.1.\left(-6\right)=73>0\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

18 tháng 8 2023

\(a,đk:x\ge5\\ \Leftrightarrow\sqrt{x-5}+\sqrt{4\left(x-5\right)}-\dfrac{1}{5}\sqrt{9\left(x-5\right)}=3\\ \Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\dfrac{1}{5}.3\sqrt{x-5}=3\\ \Leftrightarrow\dfrac{12}{5}\sqrt{x-5}=3\\ \Rightarrow\sqrt{x-5}=\dfrac{5}{4}\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2=\left(\dfrac{5}{4}\right)^2\\ \Leftrightarrow x-5=\dfrac{25}{16}\\ \Rightarrow x=\dfrac{25}{16}+5\\ \Rightarrow x=\dfrac{105}{16}\left(t|m\right)\)

\(b,đk:x\ge1\\ \Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}=-2\\ \Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\\ \Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\\ \Leftrightarrow x=2\left(t|m\right)\)

28 tháng 9 2019

2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(-\sqrt{x+2}=-9\)

\(x+2=81\)

\(\Rightarrow x=79\)

3) \(\sqrt{x^2-4x+4}=7x-1\)

\(\sqrt{x^2-2.x.2+2^2}=7x-1\)

\(\sqrt{\left(x-2\right)^2}=7x-1\)

\(x-2=7x-1\)

\(-2=7x-1-x\)

\(-2+1=7x-x\)

\(-1=6x\)

\(-\frac{1}{6}=x\)

\(\Rightarrow x=-\frac{1}{6}\)

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

a) Ta có: \(\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b) ĐKXĐ: \(x\ge-2\)

Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+\dfrac{4}{5}\cdot5\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7(thỏa ĐK)

4 tháng 7 2021

a) \(\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

Vậy:.....

b) ĐKXĐ: x ≥ -2

 \(\Leftrightarrow\sqrt{9}.\sqrt{x+2}-5.\sqrt{x+2}+\dfrac{4}{5}.\sqrt{25}.\sqrt{x+2}=6\)

<=> \(\sqrt{x+2}.\left(3-5+\dfrac{4}{5}.5\right)=6\)

\(\Leftrightarrow2.\sqrt{x+2}=6\)

\(\Leftrightarrow\sqrt{x+2}=3\)

<=> x + 2 = 9

<=> x = 7

2 tháng 9 2021

\(a.\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)( x lớn hơn hoặc =1)
\(\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}\)+2=0
\(\sqrt{x-1}\left(1+\sqrt{4}-\sqrt{25}\right)=-2\)
\(\sqrt{x-1}\left(1+2-5\right)=-2\)
\(\sqrt{x-1}.\left(-2\right)=-2\)
\(\sqrt{x-1}=-2.2\)
\(\sqrt{x-1}-4\)(ko thỏa mãn)
b)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9\left(x-1\right)}+24\dfrac{\sqrt{x-1}}{8}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.3\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)\sqrt{x-1}=-17\)
\(7\sqrt{x-1}=-17\)
\(\sqrt{x-1}=-\dfrac{17}{7}\)(ko thỏa mãn căn bậc 2 ko có số âm)

a: Ta có: \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow x-1=1\)

hay x=2

15 tháng 10 2023

a: ĐKXĐ: x-5>=0

=>x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x-1>=0

=>x>=1

\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

=>\(-2\sqrt{x-1}=4\)

=>\(\sqrt{x-1}=-2\)(vô lý)

Vậy: Phương trình vô nghiệm

c: ĐKXĐ: x-2>=0

=>x>=2

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)

=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)

=>\(-\sqrt{x-2}=-4\)

=>x-2=16

=>x=18(nhận)

d: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)

=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)

=>\(4\sqrt{x+3}=0\)

=>x+3=0

=>x=-3(nhận)

15 tháng 10 2023

a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left|x-5\right|=4\)

=> \(x-5=\pm4\)

\(x=\pm4+5\)

\(x=9;x=1\)

Vậy x=9; x=1

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7