\(2^n\left(n-1\right)=2^{12}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ pt => n-1 chẵn 

Đặt n-1=2k

\(PT\Leftrightarrow2^n.2k=2^{12}\)

\(\Leftrightarrow2^n.k=2^{11}\)

\(\Leftrightarrow2^{2k+1}.k=2^{11}\)

\(\Leftrightarrow4^k.k=2^{10}=4^4.4\)

=> k=4

=> n=9 

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm

5 tháng 6 2018

x^8 + 2x^6 + 2x^4 + x^2 + 1 - 4x^6 = 12( x^4 - 2x^2 - 1 ) - 4

x^8 + 2x^4 + x^2 + 1 - 2x^6 = 12x^4 - 24x^2 - 12 - 4

x^8 - 2x^6 = 12x^4 - 2x^4 - 24x^2 - x^2 - 16 - 1

x^8 - 2x^6 = 10x^4 - 25x^2 - 17

( x^2 )^4 - 2( x^2 )^3 = 10(x^2)^2 - 25x^2 - 17

0 = 10(x^2)^2 - ( x^2)^4 - 25x^2 + 2(x^2)^3 - 17

17 = (x^2)[ 10x^2 - (x^2)^3 - 25 + 2(x^2)^2 ]

17 = ( x^2 )[ 10x^2 - x^6 - 25 + 2x^4 ]

Botay.com.vn

6 tháng 6 2018

Giải phương trình mà NEVER_NNL

1 tháng 4 2016

đặt t= m^2+m+1

pt<=>n^2+n+1=t^2-16

<=>4n^2+4n+4=4t^2-64

<=>(2n+1-2t)(2n+1+2t)=-67

................................

5 tháng 4 2019

\(\Leftrightarrow x-16+\sqrt{x-15}-1=0\)0

\(\Leftrightarrow x-16+\frac{x-16}{\sqrt{x-15}+1}\)= 0

\(\Leftrightarrow\left(x-16\right)\cdot\left(1+\frac{1}{\sqrt{x-15}+1}\right)\)=0

5 tháng 4 2019

b)\(\Leftrightarrow\left(x^2-5\cdot x+4\right)\cdot\left(x^2-5\cdot x+6_{ }\right)=0\)

Đật T=\(x^2-5\cdot x+4\)

C) dat T= \(x^2+x+1\)

9 tháng 8 2017

a. Với \(m=1;n=\sqrt{2}\)thay vào phương trình ta có 

\(x^2+\left(\sqrt{2}+1\right)x+\sqrt{2}=0\Leftrightarrow x\left(x+\sqrt{2}\right)+\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\sqrt{2}\end{cases}}\)

Vậy với \(m=1;n=\sqrt{2}\)thì phương trình có 2 nghiệm \(x=-1;x=-\sqrt{2}\)

b. Ta có \(\Delta=\left(mn+1\right)^2-4mn=m^2n^2+2mn+1-4mn=m^2n^2-2mn+1\)

\(=\left(mn-1\right)^2>0\forall m,n\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m;n

4 tháng 6 2016

Đặt ẩn phụ nhé em. :)

Đặt \(x^2+x+1=t\left(t>0\right)\), ta có phương trình \(t\left(t+11\right)=12\Rightarrow t=1\left(tm\right)\)hoặc \(t=-12\left(l\right)\)

Từ đó \(x^2+x+1=1\Leftrightarrow x=0\) hoặc  \(x=-1\)

4 tháng 6 2016

x=-1 hoặc 0