Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x-16+\sqrt{x-15}-1=0\)0
\(\Leftrightarrow x-16+\frac{x-16}{\sqrt{x-15}+1}\)= 0
\(\Leftrightarrow\left(x-16\right)\cdot\left(1+\frac{1}{\sqrt{x-15}+1}\right)\)=0
x^8 + 2x^6 + 2x^4 + x^2 + 1 - 4x^6 = 12( x^4 - 2x^2 - 1 ) - 4
x^8 + 2x^4 + x^2 + 1 - 2x^6 = 12x^4 - 24x^2 - 12 - 4
x^8 - 2x^6 = 12x^4 - 2x^4 - 24x^2 - x^2 - 16 - 1
x^8 - 2x^6 = 10x^4 - 25x^2 - 17
( x^2 )^4 - 2( x^2 )^3 = 10(x^2)^2 - 25x^2 - 17
0 = 10(x^2)^2 - ( x^2)^4 - 25x^2 + 2(x^2)^3 - 17
17 = (x^2)[ 10x^2 - (x^2)^3 - 25 + 2(x^2)^2 ]
17 = ( x^2 )[ 10x^2 - x^6 - 25 + 2x^4 ]
Botay.com.vn
ĐK \(x\ge-2\)
pT<=> \(2\left(x+1\right)\sqrt{x+2}+2\left(x+6\right)\sqrt{x+7}=2x^2+14x+24\)
<=>\(\left(x+1\right)\left(x+2-2\sqrt{x+2}\right)+\left(x+6\right)\left(x+4-2\sqrt{x+7}\right)+x-2=0\)
<=>\(\frac{\left(x+1\right)\left(x^2-4\right)}{x+2+2\sqrt{x+2}}+\frac{\left(x+6\right)\left(x^2+4x-12\right)}{x+4+2\sqrt{x+7}}+x-2=0\forall x>-2\)
=> \(\orbr{\begin{cases}x=2\\\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}\end{cases}}+\frac{x+6}{x+4+2\sqrt{x+7}}+1=0\left(2\right)\)
Pt (2) + \(x\ge-1\)=> \(VT>0\)=> PT (2) vô nghiệm
+ \(-2< x\le-1\)=> \(\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}>-1\)=> \(VT>0\)=> PT vô nghiệm
Vậy x=2
a. \(2x^3-x^2+3x+6=0\)
\(\Leftrightarrow2x^3+2x^2-3x^2-3x+6x+6=0\)
\(\Leftrightarrow2x^2\left(x+1\right)-3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)
\(\Leftrightarrow x+1=0\) ( vì \(2x^2-3x+6\) > 0 với mọi x)
\(\Leftrightarrow x=-1\)
Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\).
b. \(x\left(x+1\right)\left(x+4\right)\left(x+5\right)=12\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+4\right)=12\)(1)
Đặt \(x^2+5x=a\) . Khi đó pt (1) trở thành :
\(a\left(a+4\right)=12\)
\(\Leftrightarrow a^2+4a-12=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-2=0\\a+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)
* Với a = 2 thì \(x^2+5x=2\Leftrightarrow x^2+5x-2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{33}}{2}\\x=\dfrac{-5-\sqrt{33}}{2}\end{matrix}\right.\)
* Với a = -6 thì \(x^2+5x=-6\Leftrightarrow x^2+5x+6=0\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{\dfrac{-5+\sqrt{33}}{2};\dfrac{-5-\sqrt{33}}{2};-2;-3\right\}\)
đặt \(\sqrt{x^2-2x+12}=a\)
pt <=>a=a^2
<=>a(1-a)=0
<=>a=0 hoặc a=1 thay vào rồi giải tiếp
Đặt ẩn phụ nhé em. :)
Đặt \(x^2+x+1=t\left(t>0\right)\), ta có phương trình \(t\left(t+11\right)=12\Rightarrow t=1\left(tm\right)\)hoặc \(t=-12\left(l\right)\)
Từ đó \(x^2+x+1=1\Leftrightarrow x=0\) hoặc \(x=-1\)
x=-1 hoặc 0