K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

đề đúng chứ bạn? 28x^2 hay 28y^2?

(19+28)x^2=729

s đó tính ra =.= hỏi chi bài này z ~.~

chắc bạn ấy ghi sai đề

14 tháng 2 2018

\(19x^2+28y^2=729\)

\(\Leftrightarrow18x^2+27y^2+x^2+y^2=3.243=9.81\)

\(\Rightarrow\left(x^2+y^2\right)⋮3\Rightarrow x,y⋮3\)
(vì a^2 chia cho 3 dư 1) 
đặt x = 3u, y =3v thay vào pt: 
19.(3u)^2 + 28(3v)^2 = 9.81 
=> 19u^2 + 28.v^2 = 81 
lập luận tương tự: đặt u = 3u1, v =3v1, ta có: 
19(3.u1)^2 + 28(3.v1)^2 = 9.9 
=> 19u1^2 + 28v1^2 = 9 
tượng tự: đặt u1 = 3.u2, v1 = 3.v2, ta có: 
19.(3.u2)^2 + 28(3.v2)^2 = 9 
=> 19u2^2 + 28v2^2 = 1 pt nầy vô nghiệm 
vậy pt đã cho không có nghiệm nguyên 

15 tháng 7 2018

giúp mk nhanh nha các bn..........ai lm đúng và chi tiết sớm nhất mk k cho nha

3 tháng 10 2021

câu d x^2+y^2-4x+4y=1

3 tháng 10 2021

a. 3x2 - 4y2 = 18

<=> \(\left\{{}\begin{matrix}3x^2=18+4y^2\\4y^2=-\left(3x^2-18\right)\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{18+4y^2}{3}}\\y=\sqrt{\dfrac{-3x^2+18}{4}}\end{matrix}\right.\)

b, c, d tương tự nhé

3 tháng 10 2021

b. 19x2 + 28y2 = 2001

<=> \(\left\{{}\begin{matrix}19x^2=2001-28y^2\\28y^2=2001-19x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{2001-28y^2}{19}}\\y=\sqrt{\dfrac{2001-19x^2}{28}}\end{matrix}\right.\)

c. x2 = 2y2 - 8y + 3

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\8y=2y^2+3-x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\y=\dfrac{2y^2+3-x^2}{8}\end{matrix}\right.\)

d. x2 + y2 - 4x + 4y = 1

<=> \(\left\{{}\begin{matrix}x^2=1-y^2+4x-4y\\y^2=1-x^2+4x-4y\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{1-y^2+4x-4y}\\y=\sqrt{1-x^2+4x-4y}\end{matrix}\right.\)

a) Ta có: \(x^3-9x^2+19x-11=0\)

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}+4\\x=-\sqrt{5}+4\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{5}+4;-\sqrt{5}+4\right\}\)

3 tháng 10 2021

d) \(x^2+y^2-4x+4y=1\\ \Rightarrow\left(x-2\right)^2+\left(y+2\right)^2=8\)

\(\Rightarrow8=\left(x-2\right)^2+\left(y+2\right)^2\ge\left(x-2\right)^2\)

\(\Rightarrow\left(x-2\right)^2\le8\)

Mà \(\left(x-2\right)^2\) là SCP và là số chẵn nên \(\left(x-2\right)^2\in\left\{0;4\right\}\)

Th1: \(\left(x-2\right)^2=0\Rightarrow\left(y+2\right)^2=8\left(vôlí\right)\)

Th2: \(\left(x-2\right)^2=4\Rightarrow\left(y+2\right)^2=4\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-2\\y+2=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=2\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(0;-4\right);\left(0;0\right);\left(4;-4\right);\left(4;0\right)\right\}\)