Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
<=>\(\left(x^2-4\right)\left(x^2-10\right)=72\) (1)
Đặt \(x^2-7=t\)
=> pt (1) <=> \(\left(t+3\right)\left(t-3\right)=72\)
<=> \(t^2-9=72\)
<=> \(t^2-81=0\)
<=> \(\left(t-9\right)\left(t+9\right)=0\)
Tự làm nốt
\(8x^2-\left(4x+3\right)^3+\left(2x+3\right)^3=0\)
\(\Leftrightarrow8x^2+\left(2x+3-4x-3\right)\left[\left(4x+3\right)^2+\left(2x+3\right)\left(4x+3\right)+\left(2x+3\right)^2\right]=0\)
\(\Leftrightarrow8x^2-2x\left(16x^2+24x+9+8x^2+18x+9+4x^2+12x+9\right)=0\)
\(\Leftrightarrow2x\left(4x-28x^2-54x-27\right)=0\)
\(\Leftrightarrow2x\left(28x^2+50x+27\right)=0\)
Tự làm nốt
Sửa đề: 8x-1
=>2(8x^2-x)(8x^2-x+2)-126=0
=>2[(8x^2-x)^2+2(8x^2-x)]-126=0
=>(8x^2-x)^2+2(8x^2-x)-63=0
=>(8x^2-x+9)(8x^2-x-7)=0
=>8x^2-x-7=0
=>x=1 hoặc x=-7/8
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)
\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2+3x^2+3x+2x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+2x+x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{2;-1;-2\right\}\)
Vậy....
c, \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x^3+1\right)+7x\left(x+1\right)=0\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2\left(x^2-x+1\right)+7x\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
Tập nghiệm của pt: \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)
b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\) (1)
Đặt: \(x^2-7=t\left(t\ge-7\right)\)
Khi đó (1) trở thành: \(\left(t+3\right)\left(t-3\right)=72\Leftrightarrow t^2-9=72\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\left(loai\right)\end{cases}}\)
\(t=9\Rightarrow x^2-7=9\Leftrightarrow x=\pm4\)
Tập nghiệm của pt là \(S=\left\{\pm4\right\}\)
a, \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}\)
\(\left(x^2+8x+8\right)^2=\left(4x+6\right)\left(2x^2+12x+10\right)\)
\(\left(x^2+8x+8\right)^2-\left[\left(4x+6\right)\left(2x^2+12x+10\right)\right]=0\)
\(\left(x^2+4x+2\right)^2=0\)
\(x^2+4x=-2\)
\(x\left(x+4\right)=-2\)
\(x=\pm\sqrt{2}-2\)
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}
\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72.\)(nhân cả 2 vế vs 8)
Đặt \(a=8x-1.\)ta có pt
\(\left(a-1\right)a^2\left(a+1\right)=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0.\)
\(\Rightarrow\left(a-3\right)\left(a+3\right)=0\)(do \(a^2+8\ne0.\))
\(\Rightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}8x-1=3\\8x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0.5\\x=-0.25\end{cases}}\)
vậy, \(S=\left\{0.5;-0.25\right\}.\)
xong rồi đó bn
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow t\left(t-6\right)=72\) ( với \(t=x^2-4\) \(\Rightarrow t\ge-4\forall x\) )
\(\Leftrightarrow t^2-6t-72=0\)
\(\Leftrightarrow t^2+6t-12t-72=0\)
\(\Leftrightarrow t\left(t+6\right)-12\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-12=0\\t+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=12\\t=-6\left(VL\right)\left(dot\ge-4\right)\end{matrix}\right.\)
\(\Leftrightarrow x^2-4=12\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
giúp mk nhanh nha các bn..........ai lm đúng và chi tiết sớm nhất mk k cho nha