Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(19x^2+28y^2=729\)
\(\Leftrightarrow18x^2+27y^2+x^2+y^2=3.243=9.81\)
\(\Rightarrow\left(x^2+y^2\right)⋮3\Rightarrow x,y⋮3\)
(vì a^2 chia cho 3 dư 1)
đặt x = 3u, y =3v thay vào pt:
19.(3u)^2 + 28(3v)^2 = 9.81
=> 19u^2 + 28.v^2 = 81
lập luận tương tự: đặt u = 3u1, v =3v1, ta có:
19(3.u1)^2 + 28(3.v1)^2 = 9.9
=> 19u1^2 + 28v1^2 = 9
tượng tự: đặt u1 = 3.u2, v1 = 3.v2, ta có:
19.(3.u2)^2 + 28(3.v2)^2 = 9
=> 19u2^2 + 28v2^2 = 1 pt nầy vô nghiệm
vậy pt đã cho không có nghiệm nguyên
(19+28)x^2=729
s đó tính ra =.= hỏi chi bài này z ~.~
3/ \(x^2=2\left(y-2\right)^2-5\Rightarrow\left(\sqrt{2}y-2\sqrt{2}\right)^2-x^2=5\)
\(\Leftrightarrow\left(\sqrt{2}y-2\sqrt{2}+x\right)\left(\sqrt{2}y-2\sqrt{2}-x\right)=5\)
Lập bảng giải ra tiếp.
P/s: Cách này có vẽ không hay lắm thiết nghĩ dùng delta sẽ hay hơn nhưng để thử=)
Ta có :
\(19x^2+28y^2=2001\) ( 1 )
\(\Leftrightarrow\left(18x^2+27y^2\right)+\left(x^2+y^2\right)=2001\)
Vì \(18x^2+27y^2⋮3\)và \(2001⋮3\)
nên \(x^2+y^2⋮3\)
Mà 1 số chính phương chia cho 3 chỉ có thể dư 0 và 1 nên \(x^2+y^2⋮3\Leftrightarrow\hept{\begin{cases}x⋮3\\y⋮3\end{cases}}\)
Đặt \(\hept{\begin{cases}x=3m\\y=3n\end{cases}}\)( m,n thuộc Z)
Thay x=3m và y=3n vào ( 1 ) , ta có :
\(19\left(3m\right)^2+28\left(3n\right)^2=2001\)
\(\Leftrightarrow19m^2+28n^2=\frac{667}{3}\)
Phương trình này vô nghiệm vì m , n là các số nguyên
Vậy PT vô nghiệm .
ai giup vs
Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là x=....y
giải chi tiết nha
10, \(5x^3+11y^3=-13z^3\)
\(\Rightarrow5x^3+11y^3⋮13\)
\(\Rightarrow x,y⋮13\)
\(\Rightarrow z⋮13\)
Đến đây dùng lùi vô hạn nhé
4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z
+) TH1: x = 0; y = 0 => z = 2 (tm)
+) TH2: x = 0; y = 1=> z = 2(tm)
+) Th3: x= 1; y = 0 => z = 2(tm)
+) TH4: x = 1; y= 1 => z = 2 (tm)
+) TH5: y > 1
với \(x\le y\)
Khi đó: x! = 1.2.3...x;
y! = 1.2.3...x.(x+1)...y
z! = 1.2.3....x.(x+1)...y(y+1)...z
Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z
<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1
<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1
Với \(y\le x\)cũng làm tương tự và loại'
Vậy:...