Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(19x^2+28y^2=729\)
\(\Leftrightarrow18x^2+27y^2+x^2+y^2=3.243=9.81\)
\(\Rightarrow\left(x^2+y^2\right)⋮3\Rightarrow x,y⋮3\)
(vì a^2 chia cho 3 dư 1)
đặt x = 3u, y =3v thay vào pt:
19.(3u)^2 + 28(3v)^2 = 9.81
=> 19u^2 + 28.v^2 = 81
lập luận tương tự: đặt u = 3u1, v =3v1, ta có:
19(3.u1)^2 + 28(3.v1)^2 = 9.9
=> 19u1^2 + 28v1^2 = 9
tượng tự: đặt u1 = 3.u2, v1 = 3.v2, ta có:
19.(3.u2)^2 + 28(3.v2)^2 = 9
=> 19u2^2 + 28v2^2 = 1 pt nầy vô nghiệm
vậy pt đã cho không có nghiệm nguyên
giúp mk nhanh nha các bn..........ai lm đúng và chi tiết sớm nhất mk k cho nha
a. 3x2 - 4y2 = 18
<=> \(\left\{{}\begin{matrix}3x^2=18+4y^2\\4y^2=-\left(3x^2-18\right)\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{18+4y^2}{3}}\\y=\sqrt{\dfrac{-3x^2+18}{4}}\end{matrix}\right.\)
b, c, d tương tự nhé
b. 19x2 + 28y2 = 2001
<=> \(\left\{{}\begin{matrix}19x^2=2001-28y^2\\28y^2=2001-19x^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{2001-28y^2}{19}}\\y=\sqrt{\dfrac{2001-19x^2}{28}}\end{matrix}\right.\)
c. x2 = 2y2 - 8y + 3
<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\8y=2y^2+3-x^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\y=\dfrac{2y^2+3-x^2}{8}\end{matrix}\right.\)
d. x2 + y2 - 4x + 4y = 1
<=> \(\left\{{}\begin{matrix}x^2=1-y^2+4x-4y\\y^2=1-x^2+4x-4y\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{1-y^2+4x-4y}\\y=\sqrt{1-x^2+4x-4y}\end{matrix}\right.\)
a) Ta có: \(x^3-9x^2+19x-11=0\)
\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)
\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}+4\\x=-\sqrt{5}+4\end{matrix}\right.\)
Vậy: \(S=\left\{1;\sqrt{5}+4;-\sqrt{5}+4\right\}\)
d) \(x^2+y^2-4x+4y=1\\ \Rightarrow\left(x-2\right)^2+\left(y+2\right)^2=8\)
\(\Rightarrow8=\left(x-2\right)^2+\left(y+2\right)^2\ge\left(x-2\right)^2\)
\(\Rightarrow\left(x-2\right)^2\le8\)
Mà \(\left(x-2\right)^2\) là SCP và là số chẵn nên \(\left(x-2\right)^2\in\left\{0;4\right\}\)
Th1: \(\left(x-2\right)^2=0\Rightarrow\left(y+2\right)^2=8\left(vôlí\right)\)
Th2: \(\left(x-2\right)^2=4\Rightarrow\left(y+2\right)^2=4\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-2\\y+2=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=2\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(0;-4\right);\left(0;0\right);\left(4;-4\right);\left(4;0\right)\right\}\)
(19+28)x^2=729
s đó tính ra =.= hỏi chi bài này z ~.~
chắc bạn ấy ghi sai đề