\(x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

\((x+1)(x+2)(x+4)(x+8)=28x^2\)

\(\Leftrightarrow\text{(x}^2+6\text{x}+8)(\text{x}^2+9\text{x}+8)=28\text{x}^2\)                             \((1)\)

Thấy x = 0 không là nghiệm của \((1)\). Chia \((2)\)vế \((1)\)cho \(\text{x}^2\)ta được :

\((1)\Leftrightarrow(\text{x}+\frac{8}{\text{x}}+6)(\text{x}+\frac{8}{9}+9)=28\)

Đặt \(\text{t}=\text{x}+\frac{8}{\text{x}}\). Ta có :

\((1)\Leftrightarrow(\text{t}+6)(\text{t}+9)=28\)

\(\Leftrightarrow\text{t}^2+15\text{t}+26=0\Leftrightarrow\orbr{\begin{cases}\text{t}=-2\\\text{t}=-13\end{cases}}\)

  • Với \(\text{t}=-2\)\(\Rightarrow\text{x}+\frac{8}{\text{x}}=-2\Leftrightarrow\text{x}^2+2\text{x}+8=0\Leftrightarrow(\text{x}+1)^2+7>0\)\((\)vô nghiệm\()\)
  • Với \(t=-13\Rightarrow x+\frac{8}{x}=-13\Leftrightarrow x^2+13x+8=0\)

\(\Delta=13^2-4(1\cdot8)=137\Rightarrow x_{1,2}=\frac{-13\pm\sqrt{137}}{2}\)\((\)thỏa mãn\()\)

Vậy : 

10 tháng 11 2018

TL bạn cho mình hỏi là ở chỗ chia 2 về (1) cho \(x^2\) sao lại ra cái phần dưới vậy

29 tháng 6 2020

\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x+2}=0\)

\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x^2+4x-3x-10-x^2+2x}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+3x-10}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+5x-2x-10}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

=> x+5=0

<=> x=-5(tmđk)

Vậy x=-5 là nghiệm của phương trình

29 tháng 6 2020

\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\) ( đkxđ : \(x\ne\pm2\))

\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow2x^2+4x-3x-10=x^2-2x\)

\(\Leftrightarrow2x^2+4x-3x-10-x^2+2x=0\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

\(x\ne\pm2\)=> x = -5

7 tháng 11 2018

ĐKXĐ: x > y

Ta có hệ \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=18\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}x+y+2\sqrt{\left(x+y\right)\left(x-y\right)}+x-y=16\\x^2+y^2=18\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2\sqrt{x^2-y^2}=16-2x\\x^2+y^2=18\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2-y^2}=8-x\\x^2+y^2=18\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\x^2-y^2=\left(8-x\right)^2\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-y^2=64-16x+x^2\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\-y^2=64-16x\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\y^2=16x-64\\x^2+y^2-y^2=18-16x+64\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}x\le8\left(1\right)\\y^2=16x-64\left(2\right)\\x^2+16x-82=0\left(3\right)\end{cases}}\)

Giải (3) \(x^2+16x-82=0\)

          \(\Leftrightarrow x^2+16x+64=146\)

         \(\Leftrightarrow\left(x+8\right)^2=146\)

         \(\Leftrightarrow x+8=\pm\sqrt{146}\)

         \(\Leftrightarrow x=\pm\sqrt{146}-8\)(Thỏa mãn (1) )

Thay vào (2) tìm được y rồi so sánh ĐKXĐ => KL

7 tháng 11 2018

@Fabulous Joker cảm ơn ông nhiều lắm
mai tôi phải nộp bài r

15 tháng 6 2018

8)a) \(\left(x^2-9\right)\sqrt{2-x}=x\left(x^2-9\right)\)

\(\Leftrightarrow\left(x^2-9\right)\sqrt{2-x}-x\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(\sqrt{2-x}-x\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=\pm3\\\left\{{}\begin{matrix}x>0\\x^2+x-2=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=\pm3\\\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)\left(x+2\right)=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=-3\) hoặc x=1

Vậy nghiệm của pt là:...

16 tháng 6 2018

Giúp em các bài đăng đi ạ.

29 tháng 5 2018

\(x-4\sqrt{x}-6=0\)

\(< =>\sqrt{x}^2-4\sqrt{x}-6=0\)

\(\left(a=1;b=-4;b'=-2;c=-6\right)\)

\(\Delta'=b'^2-ac\)

    \(=\left(-2\right)^2-1.\left(-6\right)\)

   \(=4+6\)

   \(=10>0\)

\(\sqrt{\Delta'}=\sqrt{10}\)

Phương trình có 2 nghiệm phân biệt 

\(\sqrt{x_1}=\frac{2+\sqrt{10}}{1}=2+\sqrt{10}\)

\(\sqrt{x_2}=\frac{2-\sqrt{10}}{1}=2-\sqrt{10}\)

Với \(\sqrt{x_1}=2+\sqrt{10}\) suy ra \(x_1=\left(2+\sqrt{10}\right)^2=14+4\sqrt{10}\)

Với \(\sqrt{x_2}=2-\sqrt{10}\) suy ra \(x_2=\left(2-\sqrt{10}\right)^2=14-4\sqrt{10}\)

HỌC TỐT !!! 

13 tháng 8 2015

pt (1) <=>5x-2x^2-xy+y^2-y-2=0 

giai phuong trinh (1) theo an y ta co: 
y² - (x+1)y - (2x² - 5x+2)=0 
<=>Δ=(x+1)²+4(2x² - 5x+2)=x²+2x+1+8x²-20y+8=9x²-18x+9 
=9(x-1)² 
Δ>=0 => phuong trinh co nghiem 
<=>y=(x+1+3(x-1))/2 hoac y=(x+1-3(x-1))/2 
<=>y=2x-1 hoac y=2-x 
* thay y=2x-1 vao pt 2 ta duoc: 
x²+(2x-1)²+x+(2x-1)=4 
<=>5x²-x-4=0 
giai phuong trinh tren ta tim duoc x=1 va y=1 hoac x=-4/5 va y=-13/5 
*the y=2-x vao pt 2 ta duoc 
x²+(2-x)²+x+(2-x)=4 
<=>2x²-4x+2=0 
<=>x=1 =>y=1 
vay phuong trinh co 2 nghiem (1;1);(-4/5;-13/5)

13 tháng 8 2015

\(pt\left(1\right)\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=0\)

Chia 2 trường hợp vào dùng pp thế, thế xuống pt dưới.

28 tháng 5 2021

\(x\left(x^2+13x-6\right)=\left(x^2+8x-6\right)\sqrt{x^2+6x}\)

=> \(\left[x\left(x^2+13x+6\right)\right]^2=\left[\left(x^2+8x-6\right)\sqrt{x^2+6x}\right]^2\)

=> \(x^2\left(x^2+13x+6\right)^2=\left(x^2+8x-6\right)^2\left(x^2+6x\right)\)

<=> \(x^2\left(x^2+13x+6\right)-x\left(x+6\right)\left(x^2+8x-6\right)^2=0\)

<=> \(x\left(x^3+13x^2+6x-x^3-8x^2+6x-6x^2-48x+36\right)=0\)

<=> \(x\left(-x^2-36x+36\right)=0\)

28 tháng 5 2021

từ dòng ba xuống dòng bốn bạn ghi thiếu bình phương rùi