\(\sqrt{x+2} - \sqrt{x+3}=\sqrt{x+4} - \sqrt{x+7}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

ĐKXĐ: x > y

Ta có hệ \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=18\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}x+y+2\sqrt{\left(x+y\right)\left(x-y\right)}+x-y=16\\x^2+y^2=18\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2\sqrt{x^2-y^2}=16-2x\\x^2+y^2=18\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2-y^2}=8-x\\x^2+y^2=18\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\x^2-y^2=\left(8-x\right)^2\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-y^2=64-16x+x^2\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\-y^2=64-16x\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\y^2=16x-64\\x^2+y^2-y^2=18-16x+64\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}x\le8\left(1\right)\\y^2=16x-64\left(2\right)\\x^2+16x-82=0\left(3\right)\end{cases}}\)

Giải (3) \(x^2+16x-82=0\)

          \(\Leftrightarrow x^2+16x+64=146\)

         \(\Leftrightarrow\left(x+8\right)^2=146\)

         \(\Leftrightarrow x+8=\pm\sqrt{146}\)

         \(\Leftrightarrow x=\pm\sqrt{146}-8\)(Thỏa mãn (1) )

Thay vào (2) tìm được y rồi so sánh ĐKXĐ => KL

7 tháng 11 2018

@Fabulous Joker cảm ơn ông nhiều lắm
mai tôi phải nộp bài r

10 tháng 10 2019

a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}

\(\sqrt{3x-5}=\sqrt{7x-1}\)

\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)

\(\left|3x-5\right|=\left|7x-1\right|\)

\(3x-5=7x-1\)

\(-4x=4\) => x = -1

5 tháng 9 2017

Áp dụng BĐT AM-GM ta có:

\(VT=\sqrt{x^2+x-5}+\sqrt{-x^2+x+3}\)

\(\le\frac{x^2+x-5+1}{2}+\frac{-x^2+x+3+1}{2}\)

\(=\frac{x^2+x-4}{2}+\frac{-x^2+x+4}{2}=x\)

\(\Rightarrow x\le x^2-3x+2\Leftrightarrow-\left(x-2\right)^2+2\le0\)

Khi \(x=2\pm\sqrt{2}\)

23 tháng 10 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x\ge-3\\x\ge-4\\x\ge-7\end{matrix}\right.\Leftrightarrow}x\ge-2\)

\(\sqrt{x+2}-\sqrt{x+3}=\sqrt{x+4}-\sqrt{x+7}\)

\(\Leftrightarrow x+2-2\sqrt{\left(x+2\right)\left(x+3\right)}+x+3=x+4-2\sqrt{\left(x+4\right)\left(x+7\right)}+x+7\)

\(\Leftrightarrow-2\sqrt{\left(x+2\right)\left(x+3\right)}+2\sqrt{\left(x+4\right)\left(x+7\right)}=6\)

\(\Leftrightarrow2\left[\sqrt{\left(x+4\right)\left(x+7\right)}-\sqrt{\left(x+2\right)\left(x+3\right)}\right]=6\)

\(\Leftrightarrow\sqrt{\left(x+4\right)\left(x+7\right)}-\sqrt{\left(x+2\right)\left(x+3\right)}=3\)

\(\Leftrightarrow\left(x+4\right)\left(x+7\right)-2\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}+\left(x+2\right)\left(x+3\right)=9\)

\(\Leftrightarrow-2\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}=-2x^2-16x-8\)

\(\Leftrightarrow\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}=x^2+8x+4\)

Có lẽ làm sai ở đâu đó, mk lười :V

NV
23 tháng 10 2020

ĐKXĐ: \(x\ge-2\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x+7}=\sqrt{x+3}+\sqrt{x+4}\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x+14}=2x+7+2\sqrt{x^2+7x+12}=0\)

\(\Leftrightarrow\sqrt{x^2+9x+14}+1=\sqrt{x^2+7x+12}\)

\(\Leftrightarrow x^2+9x+15+2\sqrt{x^2+9x+14}=x^2+7x+12\)

\(\Leftrightarrow2\sqrt{x^2+9x+14}=-2x-3\) (\(x\le-\frac{3}{2}\))

\(\Leftrightarrow4\left(x^2+9x+14\right)=4x^2+12x+9\)

\(\Leftrightarrow24x=-47\)

\(\Leftrightarrow x=-\frac{47}{24}\)

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !

13 tháng 10 2018

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow\left|x-2\right|=2-\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2-\sqrt{3}\\x-2=\sqrt{3}-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4-\sqrt{3}\\x=\sqrt{3}\end{matrix}\right.\)

PT có tập nghiệm : \(S=\left\{4-\sqrt{3};\sqrt{3}\right\}\)

13 tháng 10 2018

\(\sqrt{x^2-4x+4}=\sqrt{7-4\sqrt{3}}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow\left|x-2\right|=2-\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2-\sqrt{3}\\-x+2=2-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4-\sqrt{3}\\x=\sqrt{3}\end{matrix}\right.\)

Vậy \(x=\sqrt{3}\) hoặc \(x=4-\sqrt{3}\)