K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

<=> ( 4 - x + x - 2) \(^5=32\)

<=> ( 2 + 0x ) = 2

<=> 2 + 0x = 2

<=> 0x = 0

vậy phương trình trên có vô số nghiệm

Bạn duongtiendung

làm sai rồi : an + bn >< (a+b)n

22 tháng 11 2018

(x - 5)2 + (x + 3)2 = 2.(x - 4).(x + 4) - 5x + 7

x2 - 10x + 25 + x2 + 6x + 9 = 2.(x2 - 42) - 5x + 7

x2 - 10x + 25 + x2 + 6x + 9 = 2x2 - 32 - 5x + 7

x2 + x2 - 2x2 - 10x + 6x + 5x = -32 + 7 - 25 - 9

x = -59

Vậy x = -59

Hi Hi!

22 tháng 11 2018

\(\Leftrightarrow x^2-10x+25+x^2+6x+9=2x^2-32-5x+7\)

\(\Leftrightarrow x=-59\)

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

16 tháng 3 2018

ọi phương trình là A 
A <=> 4x^6 + 4x^5 + 4x^4 + 4x^3 + 4x^2 + 4x + 3 + 1 = 0 
<=> (4x^6 + 4x^5 + x^4) + (2x^4 + 4x^3 + 2x^2) + (2x^2 + 4x + 2) + x^4 + 2 = 0 
<=> [2.(2x^3 + x^2)^2 + 2.(√2.x^2 + √2 . x)^2 + 2.(x+1)^2 + x^4] + 2 = 0 
Xét tổng các số hạng trong ngoặc vuông, các số hạng đều có thừa số 2>0, thừa số còn lại là bình phương của 1 số sẽ > 0, còn số hạng ngoài ngoặc (số 2) hiển nhiên > 0. Từ đây suy ra phương trình A vô nghiệm. 

Còn cách nữa chứng minh phương trình trên vô nghiệm. Nhân cả 2 vế với x-1 rồi thu gọn, ta có phương trình: x^7 - 1 = 0 <=> x = 1. 
Ta thấy x = 1 không là nghiệm của phương trình A, vậy ta có phương trình A vô nghiệm. 

(Bài tính thì theo bài của bạn, còn phần chứng minh năm ở bài 290, sách Nâng cao và phát triển toán 8 tập 2, trang 15) 

P/S: Đình Huy ơi, chỗ (x + 1/x)^3 - 3.x.1/x.(x + 1/x) hình như phải là (x + 1/x)^3 - 3.x.1/x.(x - 1/x) chứ nhỉ?

16 tháng 3 2018

cách đơn giản hơn nhé.

Đặt    \(A=x^6+x^5+x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow\)\(x^5\left(x+1\right)+x^3\left(x+1\right)+x\left(x+1\right)+1=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^5+x^3+x\right)+1=0\)

\(\Leftrightarrow\)\(x\left(x+1\right)\left(x^4+x^2+1\right)+1=0\)

Ta có:   \(x^4+x^2+1=\left(x^2+\frac{1}{2}\right)+\frac{3}{4}>0\)       \(\forall x\)

Nếu  \(x\ge0\)thì  \(x+1>0\)\(\Rightarrow\)\(x\left(x+1\right)\left(x^4+x^2+1\right)\ge0\)\(\Rightarrow\)\(A>1\)

Nếu  \(x=-1\) thì   \(x+1=0\)\(\Rightarrow\) \(A=1\)

Nếu  \(x< -1\) thì  \(x+1< 0\) \(\Rightarrow\) \(A>0\)

Vậy pt vô nghiệm

P/s: sai đâu m.n chỉ cho mk nhé

đặt x+4 = y => x+3 = y-1 ; x+5 = y+1

Khi đó (1) trở thành:

(y-1)^4 + (y+1)^4 = 16
<=> (y^4 - 4y^3 + 6y^2 - 4y + 1) + (y^4 + 4y^3 + 6y^2 + 4y + 1) =16
<=> 2y^4 + 12y^2 + 2 = 16
<=> y^4 + 6y^2 + 1 = 8
<=> y^4 + 6y^2 - 7 =0
<=> (y^2 - 1)(y^2 + 7) = 0
=> y^2 - 1 = 0 
<=> y = +-1 
<=> x+4 = +-1 
<=> x = -3 ; x= -5

Vậy phương trinh đã cho có nhiệm x = -3 ; x = -5

đặt x-4 = y => x-3 = y+1 ; x-5 = y-1

Khi đó (1) trở thành:

(y-1)^4 + (y-1)^4 = tự tính 
<=> (y^4 + 4y^3 - 6y^2 + 4y - 1) + (y^4 - 4y^3 - 6y^2 - 4y -1) = tự tính 
<=> 2y^4 - 12y^2 - 2 = tự tính 
<=> y^4 - 6y^2 - 1 =  tự tính 
<=> y^4 - 6y^2 + 7 = tự tính 
<=> (y^2 - 1)(y^2 - 7) = tự tính 
=> y^2 +1 = tự tính 
<=> y = tự tính 
<=> x-4 = +-1 
<=>x=............;x=...........
Vậy phương trinh đã cho có nhiệm x=...........;x=.......

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }